

Traffic Measurement Formats and Output Reference Avaya Communication Server 1000

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the information in this document is complete and accurate at the time of printing, Avaya assumes no liability for any errors. Avaya reserves the right to make changes and corrections to the information in this document without the obligation to notify any person or organization of such changes.

Documentation disclaimer

"Documentation" means information published by Avaya in varying mediums which may include product information, operating instructions and performance specifications that Avaya generally makes available to users of its products. Documentation does not include marketing materials. Avaya shall not be responsible for any modifications, additions, or deletions to the original published version of documentation unless such modifications, additions, or deletions were performed by Avaya. End User agrees to indemnify and hold harmless Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation, to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked websites referenced within this site or documentation provided by Avaya. Avaya is not responsible for the accuracy of any information, statement or content provided on these sites and does not necessarily endorse the products, services, or information described or offered within them. Avaya does not guarantee that these links will work all the time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on its hardware and Software ("Product(s)"). Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya's standard warranty language, as well as information regarding support for this Product while under warranty is available to Avaya customers and other parties through the Avaya Support website: http://support.avaya.com. Please note that if you acquired the Product(s) from an authorized Avaya reseller outside of the United States and Canada, the warranty is provided to you by said Avaya reseller and not by Avaya. "Software" means computer programs in object code, provided by Avaya or an Avaya Channel Partner, whether as stand-alone products or pre-installed on hardware products, and any upgrades, updates, bug fixes, or modified versions.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE, HTTP://SUPPORT.AVAYA.COM/LICENSEINFO ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC. ANY AVAYA AFFILIATE, OR AN AUTHORIZED AVAYA RESELLER (AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH AVAYA OR AN AUTHORIZED AVAYA RESELLER. UNLESS OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN AVAYA AUTHORIZED RESELLER; AVAYA RESERVES THE RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER REFERRED TO INTERCHANGEABLY AS "YOU" AND "END USER"), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE AVAYA AFFILIATE ("AVAYA").

Heritage Nortel Software

"Heritage Nortel Software" means the software that was acquired by Avaya as part of its purchase of the Nortel Enterprise Solutions Business in December 2009. The Heritage Nortel Software currently available for license from Avaya is the software contained within the list of Heritage Nortel Products located at http://support.avaya.com/
LicenseInfo under the link "Heritage Nortel Products". For Heritage Nortel Software, Avaya grants Customer a license to use Heritage Nortel Software provided hereunder solely to the extent of the authorized activation or authorized usage level, solely for the purpose specified in the Documentation, and solely as embedded in, for execution on, or (in the event the applicable Documentation permits installation on non-Avaya equipment) for communication with Avaya equipment. Charges for Heritage Nortel Software may be based on extent of activation or use authorized as specified in an order or invoice.

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the Documentation, Software, or hardware provided by Avaya. All content on this site, the documentation and the Product provided by Avaya including the selection, arrangement and design of the content is owned either by Avaya or its licensors and is protected by copyright and other intellectual property laws including the sui generis rights relating to the protection of databases. You may not modify, copy, reproduce, republish, upload, post, transmit or distribute in any way any content, in whole or in part, including any code and software unless expressly authorized by Avaya. Unauthorized reproduction, transmission, dissemination, storage, and or use without the express written consent of Avaya can be a criminal, as well as a civil offense under the applicable law.

Third Party Components

"Third Party Components" mean certain software programs or portions thereof included in the Software that may contain software (including open source software) distributed under third party agreements (Third Party Components"), which contain terms regarding the rights to use certain portions of the Software ("Third Party Terms"). Information regarding distributed Linux OS source code (for those Products that have distributed Linux OS source code) and identifying the copyright holders of the Third Party Components and the Third Party Terms that apply is available in the Documentation or on Agaya's website at: http://support.avaya.com/Copyright. You agree to the Third Party Terms for any such Third Party Components.

Note to Service Provider

The Product may use Third Party Components that have Third Party Terms that do not allow hosting and may need to be independently licensed for such purpose.

Preventing Toll Fraud

"Toll Fraud" is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate employee, agent, subcontractor, or is not working on your company's behalf). Be aware that there can be a risk of Toll Fraud associated with your system and that, if Toll Fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya Toll Fraud intervention

If you suspect that you are being victimized by \overline{b} II Fraud and you need technical assistance or support, call Technical Service Center Toll Fraud Intervention Hotline at +1-800-643-2353 for the United States and Canada. For additional support lephone numbers, see the Aaya Support website: http://support.avaya.com. Suspected security vulnerabilities with Avaya products should be reported to Avaya by sending mail to: securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks ("Marks") displayed in this site, the Documentation and Product(s) provided by Avaya are the registered or unregistered Marks of Avaya, its affiliates, or other third

parties. Users are not permitted to use such Marks without prior written consent from Avaya or such third party which may own the Mark. Nothing contained in this site, the Documentation and Product(s) should be construed as granting, by implication, estoppel, or otherwise, any license or right in and to the Marks without the express written permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners, and "Linux" is a registered trademark of Linus Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support website: http://support.avaya.com.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for product notices and articles, or to report a problem with your Avaya product. For a list of support telephone numbers and contact addresses, go to the Avaya Support website: http://support.avaya.com, scroll to the bottom of the page, and select Contact Avaya Support.

4	Traffic Measurement Formats and Output Reference
	Comments? infodev@avaya.com

Contents

Chapter 1: New in this Release	
Features	
Other changes	1
Revision history	1¹
Chapter 2: Customer service	
Navigation	
Getting technical documentation	
Getting product training	
Getting help from a distributor or reseller	
Getting technical support from the Avaya Web site	
Chapter 3: Introduction	
Subject	
Note on legacy products and releases	
Applicable systems	
Intended audience	
Conventions	
Terminology	
Related information	
Documentation	
Online	
Chapter 4: Traffic overview	
Contents	
Introduction	
Peg count	
Failure to match (FTM)	2
Usage	
Established path	2
Service loop	2
Network loop	2
Traffic Overlay (LD 02)	2
Report schedules	2
· · · · · · · · · · · · · · · · · · ·	
•	2
System reports	
•	
· · · · · · · · · · · · · · · · · · ·	2
·	
	2
Control	

	Output	27
	Factors affecting traffic data	27
	Sysload and initialization	27
	Connections with high usage	28
	Small quantities	28
	Matching timeslots	28
	Measurement verification	29
	TFS001 and TFC001	29
	TFC001 and TFC002	29
	TFS001 and TFS002	30
Cha	pter 5: System traffic reports	31
	Contents	31
	Introduction	32
	TFS000 traffic print program entry	32
	TFS001 networks	
	Terminal loop measurements	33
	Conference loop measurements	35
	Service loops	37
	TFS002 service loops	
	Service failure to match (FTM)	39
	Service usage	39
	Service request peg count	
	Conference measurements	
	Digitone Receiver (DTR) measurements	
	Tone detector service	40
	TFS003 dial tone delay	42
	TFS004 processor load	
	Parameters applicable to all releases	
	Call capacity related parameters	
	Line Load Control (LLC)	
	Manual calculation of real-time load	
	Call Capacity Report Enhancement	
	TFS005 measurement on selected terminals	
	Line usage	
	Line peg count	
	TFS007 junctor measurements	
	Junctor FTM	
	Junctor usage	
	Junctor peg count	
	TFS008 Command Status Link and Application Module Link measurements	
	Legend for TFS008 report	
	TFS009 D-channel	
	Legend for TFS009 report	
	TFS010 ISDN GF Transport	
	TFS011 Multi-purpose ISDN Signaling Processor traffic	
	Attempted calls (MISP only)	
	Completed calls (MISP only)	63

	Call length (MISP only)	. 63
	MISP/BRSC messages	64
	Terminal messages.	64
	MISP/BRSC data packets	64
	Terminal data packets	64
	TFS012 Multi-purpose ISDN Signaling Processor D-channel	64
	MISP/BRSC links	65
	Terminal links.	
	MISP/BRSC messages	65
	Terminal messages	65
	Incomplete calls	
	Link errors	
	TFS013 Multi-purpose ISDN Signaling Processor messages	
	TFS014 ISDN BRI trunk DSL system report	
	TFS015 Meridian Packet Handler traffic report	
	TFS016 IP Phone Zone traffic report	
	TFS101 dial tone speed threshold	
	TFS102 loop traffic threshold	
	TFS105 junctor traffic threshold	_
	TFS301 initialization	
	TFS302 traffic schedule changed	
	TFS303 traffic measured over one hour.	
	TFS401 36 CCS terminals	
	TFS402 50 CCS terminals	
	Legend	
	TFS411 36 CCS peg count	
	TFS412 50 CCS peg count	
	TFS501 and TFS502 audit messages	
Cha	apter 6: Customer traffic reports	
U 110	Contents	
	Introduction	
	TFC001 networks	
	Incoming FTM	
	Incoming usage	
	Incoming usage	
	Outgoing FTM	_
	Outgoing FTM Outgoing usage	
	Outgoing usage Outgoing peg count	
	Intracustomer FTM	
	Intracustomer usage	
	Intracustomer peg count	
	1 0	
	Tandem FTM	
	Tandem usage	
	Tandem peg count	
	Permanent signal	
	Abandon	. 81

Partial dial	81
TFC002 trunks	82
Trunk traffic report options	82
Operating parameters	83
Feature interactions	83
Feature implementation	
TFC003 customer console queue measurements	
Average speed of answer	
Average attendant response	
Calls delayed peg count	91
Average time in queue	91
Abandoned calls peg count	91
Average wait time of abandoned calls	
TFC004 individual console measurements	
Peg count of internal calls handled by attendant	
Total time spent servicing internal requests	
Peg count of external calls handled by attendant	
Total time spent servicing external requests	
Total time console is attended	
Total time spent servicing calls	
Number of times all attendant loops are busy	
Attendant Alternative Answering (AAA) peg count	
Successful AAA termination peg count	
Calculate attendant performance	
TFC005 feature key usage	
TFC006 Radio Paging	
Radio Paging measurements	
Parallel Radio Paging measurements	100
Serial Radio Paging measurements	100
TFC007 Call Park	
System Park peg count	100
System Park overflow peg count	100
Station Park peg count	
Parked call access peg count	101
Park recall peg count	101
Average wait time in Call Park	
TFC008 messaging and Auxiliary Processor links	102
Auxiliary Processor Link (APL)	102
Message attendant queue	103
Telephone status	103
Telephone messaging	104
TFC009 Network Attendant Service	109
NAS TRY	109
ALT	109
DB	109
TFC012 DSP peg counter for CS 1000E Systems	110
IPMG	110

	ID	110
	Attempts to allocate DSP resources	110
	Lack of DSP resources.	110
	Lack of bandwidth	110
	TFC012 DSP peg counter for CS 1000M Systems	111
	Attempts to allocate DSP resources	
	Lack of DSP resources.	
	Lack of bandwidth	112
	TFC101 incoming matching loss threshold	112
	TFC102 outgoing matching loss threshold	
	TFC103 average speed of answer threshold	
	TFC104 percent all trunks busy threshold	
	TFC105 ISPC links establishment report	
	TFC111 usage of Broadcasting routes	
	Trunk Type	
	Successful Broadcast connections peg count	116
	Average call duration	
	Average waiting time	
	Maximum waiting time	116
	Waiting time threshold peg count	116
	Number of waiting parties threshold peg count	116
	Broadcast connections peg count for the lowest usage trunk	117
	Broadcast connections peg count for the next to lowest usage trunk	117
	Broadcast connections peg count for the next to next to lowest usage trunk	117
Cha	apter 7: Customer network traffic reports	119
	Contents	119
	Introduction	119
	Introduction	
	TFN001 route list measurements	119 120
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ).	119 120 121
	TFN001 route list measurements	119 120 121 122
	TFN001 route list measurements Route list measurements Off-hook Queuing measurements (OHQ) Call Back Queuing measurements Remote Virtual Queuing measurements	119 120 121 122 123
	TFN001 route list measurements Route list measurements Off-hook Queuing measurements (OHQ) Call Back Queuing measurements Remote Virtual Queuing measurements TFN002 Network Class of Service measurements	119 120 121 122 123 125
	TFN001 route list measurements Route list measurements Off-hook Queuing measurements (OHQ) Call Back Queuing measurements Remote Virtual Queuing measurements TFN002 Network Class of Service measurements Quantity of calls attempted	119 120 121 122 123 125 125
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay.	119 120 121 122 123 125 125 125
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances.	119 120 121 122 123 125 125 125
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking.	119 120 121 122 123 125 125 125 125
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking. Calls refusing expensive routes.	119 120 121 122 123 125 125 125 125 125 125
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ.	119 120 121 122 123 125 125 125 125 125 125
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ. Average time in OHQ.	119 120 121 122 123 125 125 125 125 125 126 126
	TFN001 route list measurements Route list measurements Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements TFN002 Network Class of Service measurements Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ. Average time in OHQ. Quantity of CBQ calls.	119 120 121 122 123 125 125 125 125 125 126 126
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ. Average time in OHQ. Quantity of CBQ calls. Average time in CBQ.	119 120 121 122 123 125 125 125 125 125 126 126 126
	TFN001 route list measurements. Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ. Average time in OHQ. Quantity of CBQ calls. Average time in CBQ. Quantity of RVQ calls.	119 120 121 122 123 125 125 125 125 126 126 126 126
	TFN001 route list measurements Route list measurements Off-hook Queuing measurements (OHQ) Call Back Queuing measurements Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements Quantity of calls attempted Routing requests served without delay Expensive route acceptances Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ Average time in OHQ Quantity of CBQ calls Average time in CBQ. Quantity of RVQ calls Average time in RVQ.	119 120 121 122 123 125 125 125 125 126 126 126 126 126
	TFN001 route list measurements Route list measurements. Off-hook Queuing measurements (OHQ). Call Back Queuing measurements. Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements. Quantity of calls attempted. Routing requests served without delay. Expensive route acceptances. Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ. Average time in OHQ. Quantity of CBQ calls. Average time in CBQ. Quantity of RVQ calls. Average time in RVQ. TFN003 incoming trunk group measurements.	119 120 121 122 123 125 125 125 125 126 126 126 126 126 126
	TFN001 route list measurements Route list measurements Off-hook Queuing measurements (OHQ) Call Back Queuing measurements Remote Virtual Queuing measurements. TFN002 Network Class of Service measurements Quantity of calls attempted Routing requests served without delay Expensive route acceptances Network callstandard blocking. Calls refusing expensive routes. Quantity of calls placed in OHQ Average time in OHQ Quantity of CBQ calls Average time in CBQ. Quantity of RVQ calls Average time in RVQ.	119 120 121 122 123 125 125 125 125 126 126 126 126 126 126

	Off-hook Queuing Timer (OHQT)	131
Cha	pter 8: Traffic (LD 02)	
	Contents	
	Introduction	134
	How to use traffic commands	134
	Traffic report format	134
	Setting and querying daylight savings information	134
	Set traffic report schedules	
	Set system ID.	137
	System reports	138
	Set system thresholds	138
	Customer reports	
	Set customer thresholds	140
	Network reports	
	Set customer for feature key usage measurement	
	Stop printing title, date, and time	141
	Set traffic measurement on selected terminals.	
	Set blocking probability for Line Load Control (LLC)	143
	Set time and date	
	Set daily time adjustment	
	Set network time synchronization	
	Print last reports.	
	Perform threshold tests on last reports	147
	pter 9: National ISDN-2 Call By Call Service Selection	
	Contents	
	Applicable regions	
	Feature description	
	Provisioning a master route and service routes	151
	Service routes for public network calls	153
	NI-2 CBC service route treatment	153
	Differences between ISA, CBC, and NI-2 CBC	
	Operating parameters	156
	Feature interactions.	
	Calling Party Privacy	157
	Feature packaging	
	Feature implementation	
	Task summary list	
	Sample configuration	
	Feature operation	
م ام مرا	·	

Chapter 1: New in this Release

The following sections detail what's new in Avaya Traffic Measurement Formats and Outputs Reference, NN43001-750 for Avaya Communication Server 1000 Release 7.6.

- Features on page 11
- Other changes on page 11

Features

There are no updates to the feature descriptions in this document.

Other changes

There are no other changes.

Revision history

March 2013	Standard 06.01. This document is up-issued to support Communication Server 1000 Release 7.6.
January 2012	Standard 05.06. This document is up-issued to support the removal of content for outdated features, hardware, and system types.
October 2011	Standard 05.05. This document is up-issued to correct Call Server commands.
August 2011	Standard 05.04. This document is up-issued to support the removal of content for outdated features, hardware, and system types.
February 2011	Standard 05.03 This document is up-issued to support Avaya Communication Server 1000 Release 7.5.
November 2010	Standard 05.01 and 05.02 This document is up-issued to support Avaya Communication Server 1000 Release 7.5.

May 2010 Standard 04.01. This document is up-issued to support Aaya

Communication Server 1000 Release 7.0.

May 2009 Standard 03.01. This document is up-issued to support

Communication Server 1000 Release 6.0.

December 7, 2007 Standard 02.01. This document is up-issued to support

Communication Server 1000 Release 5.5.

September 2007 Standard 01.03. This document is up-issued to add a note to

TFC008 messaging and Auxiliary Processor links on page 102 regarding Auxiliary Processor Links (APL) and Application Module link (AML) configuration on CS 1000E

systems.

June 20, 2007 Standard 01.02. This document is up-issued to remove the

Confidential statement.

May 2007 Standard 01.01. This document is issued to support

Communication Server 1000 Release 5.0. This document is renamed *Communication Server 1000 Traffic Measurement:* Formats and Output Reference, NN43001-750 and contains information previously contained in the following legacy document, now retired: *Traffic Measurement Formats and*

Output, 553-3001-450.

September 2006 Standard 6.00. This document is up-issued to correct errors

in system threshold and range values.

July 2006 Standard 5.00. This document is up-issued for changes in

technical content. Table 5 will now use a 12 digit example to represent Idle Cycle Count, the CPU attempts field will use a

7 digit example, and the RCC field will use a 7 digit

example.

January 2006 Standard 4.00. This document is up-issued to correct the

example for the TFS016 QoS IP statistics report.

August 2005 Standard 3.00. This document is up-issued to support

Communication Server 1000 Release 4.5.

September 2004 Standard 2.00. This document is up-issued for

Communication Server 1000 Release 4.0.

October 2003 Standard 1.00. This document is issued to support the

Succession 3.0. It was created to support a restructuring of the Documentation Library. This document contains information previously contained in the following legacy document, now retired: *Traffic Measurement: Formats and*

Output, 553-3001-450.

Chapter 2: Customer service

Visit the Avaya Web site to access the complete range of services and support that Avaya provides. Go to www.avaya.com or go to one of the pages listed in the following sections.

Navigation

- Getting technical documentation on page 13
- Getting product training on page 13
- Getting help from a distributor or reseller on page 13
- Getting technical support from the Avaya Web site on page 14

Getting technical documentation

To download and print selected technical publications and release notes directly from the Internet, go to www.avaya.com/support.

Getting product training

Ongoing product training is available. For more information or to register, go to www.avaya.com/support. From this Web site, locate the Training link on the left-hand navigation pane.

Getting help from a distributor or reseller

If you purchased a service contract for your Avaya product from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance.

Getting technical support from the Avaya Web site

The easiest and most effective way to get technical support for Avaya products is from the Avaya Technical Support Web site at www.avaya.com/support.

Chapter 3: Introduction

This document is a global document. Contact your system supplier or your Avaya representative to verify that the hardware and software described are supported in your area.

Subject

This document provides information on how traffic data is accumulated, processed, and output, and how to interpret the traffic reports. The available traffic reports are system reports, customer reports, customer network reports, threshold reports, and traffic report on selected terminals.

Note on legacy products and releases

This document contains information about systems, components, and features that are compatible with Avaya Communication Server 1000 software. For more information on legacy products and releases, go to Avaya home page:

www.avaya.com

Applicable systems

This document applies to the following systems:

- Avaya Communication Server 1000M Single Group (Avaya CS 1000M SG)
- Avaya Communication Server 1000M Multi Group (Avaya CS 1000M MG)
- Avaya Communication Server 1000E (Avaya CS 1000E)

Intended audience

This document is intended for maintenance technicians, system operators, and system managers needing detailed information on types of calls, call completion rates, call failures, waiting periods, and other vital data.

Conventions

Terminology

In this document, the following systems are referred to generically as system:

- Avaya Communication Server 1000E (Avaya CS 1000E)
- Avaya Communication Server 1000M (Avaya CS 1000M)
- Meridian 1

Related information

This section lists information sources that relate to this document.

Documentation

The following documents are referenced in this document:

- Avaya Features and Services Fundamentals, NN43001-106
- Avaya Dialing Plans Reference, NN43001-283
- Avaya ISDN Primary Rate Interface Fundamentals, NN43001-569
- Avaya Basic Network Feature Fundamentals, NN43001-579
- Avaya ISDN Basic Rate Interface Fundamentals, NN43001-580
- Avaya Software Input Output Administration, NN43001-611
- Avaya Software Input Output Reference Maintenance, NN43001-711
- Avaya Software Input Output Reference System Messages, NN43001-712
- Avaya Communication Server 1000M and Meridian 1 Large System Planning and Engineering, NN43021-220

Online

To access Avaya documentation online, go to Avaya home page:

www.avaya.com

Introduction

Chapter 4: Traffic overview

Contents

This section contains information on the following topics:

Introduction on page 20

Traffic Overlay (LD 02) on page 21

Report schedules on page 21

Time and date on page 22

System identification on page 22

Types of traffic reports on page 23

System reports on page 23

Customer reports on page 24

Customer network reports on page 25

Threshold reports on page 25

<u>Traffic report on selected terminals</u> on page 25

Traffic collection on page 26

Accumulate on page 26

Hold on page 26

Print on page 26

Control on page 27

Output on page 27

Factors affecting traffic data on page 27

Sysload and initialization on page 27

Connections with high usage on page 28

Small quantities on page 28

Matching timeslots on page 28

Measurement verification on page 29

Introduction

The systems accumulate traffic data during normal call processing. This data is processed to provide regularly scheduled reports. This section provides information on how traffic data is accumulated, processed, and output. It also provides important information on how to interpret the traffic reports.

Typical traffic measurements include the following:

Peg count

A peg count is a count of an event, such as call completion.

Failure to match (FTM)

A failure to match is a count of the number of times an idle network path could not be found between two connection points.

Usage

The usage of a resource such as a trunk or a conference is the time measurement, in 100 call seconds (CCS), of how long the resource has been busyThe usage time is normally calculated when the resource becomes idle.

Established path

An established path is a path between two terminals when both are talking to each other. Outgoing calls are not considered established until the end-of-dialing timers have expired, as set in the software. Incoming calls are not established until answer supervision is returned.

Service loop

A service loop is either a tone and digit switch loop or a multifrequency (MF) sender loop.

Network loop

A network loop provides path switching and control for stations and trunks connected to it.

The traffic data is accumulated for many of the system resources, such as lines, trunks, and network loops. The data is processed on a scheduled basis and output in various reports. The Traffic Overlay (LD 02) is used to set the traffic options.

The traffic reporting system saves system-generated traffic reports in a Traffic Log File rather than in the History File.

Traffic Overlay (LD 02)

LD 02 is used to:

- set traffic report schedules and options
- set the type of reports to be generated
- set system date, time, and daily time adjustment
- set or query the system identification (ID)
- set thresholds
- reset the system clock when daylight savings time begins and ends
- print or perform threshold tests on the last reports

The Traffic commands are provided at the end of this document (see Traffic (LD 02) on page 133) and in the following documents:

- Avaya Software Input Output Administration, NN43001-611
- Avaya Software Input Output Reference Maintenance, NN43001-711
- Avaya Software Input Output Reference System Messages, NN43001-712

Report schedules

The traffic reports can be output for the following:

- on selected days of the week during a defined period of the year, specified by start day and end day
- for any defined period of the day (for example, from 8 a.m. to 5 p.m.)
- · every hour or half hour as follows:
 - hourly, on the hour

- hourly, on the half hour
- half-hourly, on the hour and half hour

Customer reports can have different schedules.

Time and date

Manual adjustment

The time of day and date of the system can be queried and adjusted manually. Manual adjustment is required after a sysload.

Automatic adjustment

To compensate for tolerances in the system clock, the time of day can be automatically adjusted during the midnight routines.

The time of day and date of the system can also be adjusted automaticallyWhen the Network Time Synchronization feature is equipped, a node can obtain proper clock updates automatically from a Master node (clock) over the Integrated Services Digital Network (ISDN). Further information is provided in the description of the Network Tme Synchronization feature in the Avaya ISDN Primary Rate Interface Fundamentals, NN43001-569 and Avaya ISDN Basic Rate Interface Fundamentals, NN43001-580.

Note:

Since the traffic measurement schedule and midnight routines reference the time-of-day clock, these programs can be inadvertently triggered by time adjustment. For example, adjusting the time from 11:05 to 10:55 results in the output of traffic data when the system clock reads 11:00, provided output is scheduled.

System identification

The system ID is required when the system is controlled from a central administration center. The system ID identifies the system from which the traffic measurements originate. Each system is identified by a unique 1- to 4-digit number that is output as part of the traffic data.

The system ID is assigned to the system when the traffic measurement schedules and options are defined. It is input the first time traffic schedules are defined. When traffic schedules or options are changed, the system ID number need not be redefined. The system ID can also be changed using the Configuration Record 1 Overlay (LD 17).

Types of traffic reports

The following traffic reports are available:

- System reports
- Customer reports
- Customer network reports
- · Threshold reports
- Traffic report on selected terminals

System reports

System reports are identified by the prefix TFS. The three-digit code following the prefix identifies the type of report.

TFS001 networks

TFS002 service loops

TFS003 dial tone delay

TFS004 processor load

TFS005 selected terminals

TFS007 junctor group

TFSoo8 Command Status Links and Application Module Links

TFS009 D-channel (DCH)

TFS010 ISDN GF Transport

TFS011 Multi-purpose ISDN Signaling Processor traffic

TFS012 Multi-purpose ISDN Signaling Processor D-channel management

TFS013 Multi-purpose ISDN Signaling Processor messages

TFS014 ISDN BRI trunk DSL system report

TFS015 Meridian Packet Handler (MPH)

TFS016 TFS016 QoS IP Statistics report

TFS101 dial tone speed threshold

TFS102 loop traffic threshold

TFS105 junctor traffic threshold

TFS301 initialization

TFS302 traffic schedule changed

TFS303 traffic measured over one hour

TFS401 36 CCS terminals

TFS402 50 CCS terminals

TFS411 36 CCS peg counts

TFS412 50 CCS peg counts

TFS501 and TFS 502 audit messages

Customer reports

Customer reports are identified by the prefix TFC. The three-digit code following the prefix identifies the type of report.

TFC001 networks

TFC002 trunks

TFC003 customer console measurements

TFC004 individual console measurements

TFC005 feature key usage

TFC006 Radio Paging

TFC007 Call Park

TFC008 messaging and auxiliary processor links

TFC009 Network Attendant Service

TFC012 DSP peg counter for Avaya Communication Server 1000E systems

TFC101 incoming matching loss threshold

TFC102 outgoing matching loss threshold

TFC103 average speed of answer threshold

TFC104 percent all links busy threshold

TFC105 ISPC links establishment report

TFC111 use of broadcasting routes

Customer network reports

Customer network measurements are identified by the prefix TFN. The three-digit code following the measurement identifies the type of report.

TFN001 route lists measurement

TFN002 Network Class of Service measurements

TFN003 incoming trunk group measurements

TFN101 OHQ overflow threshold

Threshold reports

Various traffic thresholds can be defined to monitor system performance. When a threshold is reached, a warning message is output. For example, a threshold for attendants' average speed of answer can be defined. If this value is exceeded in a report period, then a TFC103 warning message is output. In addition, the two attendant console reports (TFC003 and TFC004) are generated, even if they are disabled. Threshold warnings may indicate the need for additional resources, such as more attendants.

The following system or customer thresholds can be defined. For each threshold, there is an equivalent traffic report.

TFS101 dial tone speed

TFS102 loop traffic

TFS105 junctor group traffic

TFC101 incoming matching loss

TFC102 outgoing matching loss

TFC103 average Speed of Answer

TFC104 percent All Trunks Busy

TFN101 off-hook queue overflow threshold

Traffic report on selected terminals

Selected lines and trunks can be defined for special traffic measurement. In addition to the normal traffic measurements, additional peg counts and usage measurements are made for this set of terminals. Lines and trunks to be included in this set are given the Individual Traffic

Measurement (ITM) class of service in the Traffic program. Attendants cannot be given the ITM class of service.

Traffic collection

The systems have five traffic data collection stages: accumulate, hold, print, control, and output.

Accumulate

When the system takes any measured action, the associated counters are updated. Traffic information is automatically accumulated as the events take place, regardless of schedules or thresholds. When the measurements are transferred to the holding register, the accumulating register returns to zero for the next tracking period.

Note:

Measurements totaling less than 50 call seconds are recorded as 0 CCS.

Hold

According to the defined schedules, traffic information is transferred from the accumulating registers to the holding registers. Each accumulating register has an associated holding register.

View or print data in the holding registers whenever desired. The information remains in the holding register until the next scheduled transfer.

Some measurements have thresholds. When the information is transferred into the holding register, the thresholds are checked. If the thresholds are exceeded, a message is printed.

Print

Once data is in the holding registers, it can be printed whenever desired, before the next scheduled transfer. Additionally, in LD 02, the holding registers can be accessed and any aspect of the traffic measurement information printed. Traffic data can only be printed when it is in the holding register.

Note:

Depending on the type and amount of information, a high-speed printer may be required.

Control

Traffic measurement variables (such as options and schedules) are accessed in LD 02. See Avaya Software Input Output Administration, NN43001-611, Avaya Software Input Output Reference - Maintenance, NN43001-711, and Avaya Software Input Output Reference -System Messages, NN43001-712 for complete information.

Output

Traffic information is output according to the schedules defined in LD 02. When data is being printed at the teletype (TTY), the output rate depends on the system time available. Information can be printed all at once, or it can be printed at intervals. Data output begins when the information enters the holding registers, and it ends before the next scheduled transfer.

Factors affecting traffic data

Any change in the system, such as a sysload or under- or over-use of facilities, can cause discrepancies in the data collected. In most cases, warning messages alert the user that the data may have been corrupt.

Sysload and initialization

A sysload or system initialization causes traffic data in the accumulating and holding registers to be lost. After sysload, any changes to traffic schedules, traffic options, or threshold levels made since the last Equipment Data Dump (EDD) must be redefined using LD 02. After a sysload, two traffic report periods are required to produce a real-time usage count.

After an initialization, a TFS301 message precedes trafic reports output. The message warns that the initialization has corrupted the trafic data because the data was not collected over the entire hour or half hour. Ignore the first traffic reports after an initialization.

A TFS302 message warns that the traffic schedule was changed during the last hour or half hour. Traffic reports following this message may be invalid if the change involved periods not previously scheduled or report types not previously enabled.

Connections with high usage

To report connections with excessive CCS, two warning messages are provided.

- TFS401 is printed when the CCS is greater than or equal to 36 CCS, but less than 50 CCS.
- TFS402 is printed for CCS greater than or equal to 50.

When a network path is held for longer than one hour (36 CCS), the accumulated usage can have a detrimental effect on hourly traffic studies. High-usage connections can result from the following:

- data terminal connections
- loop start trunks that fail to provide suitable supervision
- long conversations
- · call processing faults
- telephone problems

Small quantities

Peg counts and usage measurements for a small number of calls should not be used to analyze traffic data. Traffic measurements are not accurate for small samples.

Traffic information is accumulated in units of 2 seconds and is converted to CCS when printed. The CCS amounts are rounded to the nearest thousandth, so usage of less than 50 CCS is printed as 0 CCS.

Matching timeslots

Switching is accomplished through network groups and loops.

- A half-network group contains 16 network loops.
- A full-network group contains 32 network loops.
- A network loop has 32 timeslots.
 - 30 are used to establish a network connection
 - 1 is for signaling and control
 - 1 is reserved for future use

A timeslot is considered busy if it is in actual use or is reserved by the Central Processing Unit (CPU) for future use.

In systems with standard (non-enhanced) loops, timeslots are used in matching pairs so that each timeslot can be used with only one other timeslot on the same or different network loop. Thus, a matching pair of timeslots is idle only if both timeslots are idle. For a network connection between different groups, the matching timeslots must be idle in at least one of the four junctors between the two network groups.

Systems with enhanced loops do not require matching timeslots. Any timeslot in the enhanced network loop can be used with any other timeslot (with the exception of 0 and 1).

Measurement verification

A number of cross-reference checks can verify the traffic data. Sometimes a path is reserved but never actually used, or is used but is neither a tone and digit loop connection, nor a part of a completed call under the definition of a TFC001 report, so the checks given here contain a tolerance. For example, with ring no answer, a path is reserved between the two terminals, but not used.

TFS001 and TFC001

In these cases, TFS001 usage accumulates as the timeslots involved are considered occupied; however, no usage accumulates in either TFC001 or TFS002 reports.

The sum of TFS001 usages on all terminal loops, minus the sum of TFS001 usages on tone and digit loops should equal twice the sum of all TFC001 usages for all customers ±25 percent.

TFC001 and TFC002

For each customer the following figures should be within ±2 percent:

- Outgoing usage plus tandem usage in TFC001 should equal the outgoing trunk usages for all groups in TFC002.
- Outgoing peg count plus tandem peg count in TFC001 should equal the sum of all outgoing trunk peg counts, less Recorded Announcement Tunk peg counts, for all groups in TFC002.
- Incoming usage plus tandem usage in TFC001 should equal the sum of all incoming trunk usages for all groups in TFC002.
- Incoming peg count plus tandem peg count in TFC001 should equal the sum of all incoming trunk peg counts for all groups in TFC002.

TFS001 and TFS002

The following figures should be within ±15 percent:

- The sum of loop failure to match over all Tone and Digit Switch (TDS) loops in TFS001 should equal the sum of failure to match over all services except Digitone Receiver and conference loops in TFS002.
- The sum of loop usage over all TDS loops in TFS001 should equal the sum of service usage over all services except Digitone Receiver and conference in TFS002.
- The sum of loop peg count over all TDS loops in TFS001 should equal the sum of service peg count over all services except Digitone receiver and conference in TFS002.

The following figures should be within ±2 percent:

- The sum of loop failure to match over all conference loops in TFS001 should equal the conference failure to match in TFS002.
- The sum of loop usage over all conference loops in TFS001 should equal the conference service usage in TFS002.
- The sum of loop peg count over all conference loops in TFS001 should equal the conference service peg count in TFS002.

Chapter 5: System traffic reports

Contents

This section contains information on the following topics:

Introduction on page 32

TFS000 traffic print program entry on page 32

TFS001 networks on page 33

Terminal loop measurements on page 33

Conference loop measurements on page 35

Service loops on page 37

TFS002 service loops on page 38

Service failure to match (FTM) on page 39

Service usage on page 39

Service request peg count on page 39

Conference measurements on page 40

Digitone Receiver (DTR) measurements on page 40

Tone detector service on page 40

TFS004 processor load on page 43

Parameters applicable to all releases on page 43

Call capacity related parameters on page 45

Line Load Control (LLC) on page 47

Manual calculation of real-time load on page 48

Call Capacity Report Enhancement on page 49

TFS005 measurement on selected terminals on page 50

TFS007 junctor measurements on page 51

Junctor FTM on page 52

Junctor usage on page 52

Junctor peg count on page 52

TFS008 Command Status Link and Application Module Link measurements on page 52

TFS009 D-channel on page 58

TFS010 ISDN GF Transport on page 62

TFS011 Multi-purpose ISDN Signaling Processor traffic on page 62

TFS012 Multi-purpose ISDN Signaling Processor D-channel on page 64

TFS013 Multi-purpose ISDN Signaling Processor messages on page 66

TFS014 ISDN BRI trunk DSL system report on page 67

TFS015 Meridian Packet Handler traffic report on page 68

TFS016 IP Phone Zone traffic report on page 69

TFS101 dial tone speed threshold on page 72

TFS102 loop traffic threshold on page 73

TFS105 junctor traffic threshold on page 73

TFS301 initialization on page 74

TFS302 traffic schedule changed on page 74

TFS303 traffic measured over one hour on page 74

TFS401 36 CCS terminals on page 74

TFS402 50 CCS terminals on page 74

TFS411 36 CCS peg count on page 76

TFS412 50 CCS peg count on page 76

TFS501 and TFS502 audit messages on page 76

Introduction

This section describes the system trafic measurements and reports. Peg count and thresholds are always given as a five-digit number. Usage (accumulated CCS) and console measurements are given as seven-digit numbers.

TFS000 traffic print program entry

TFS000 is output to indicate the start of the reports.

TFS001 networks

The TFS001 report measures four types of network loops, which appear on the report as the following:

- TERM (lines, trunks, and consoles)
- TDS (Tone and Digit Switch)
- MFS (Multifrequency Sender)
- CONF (Conference service)

Six columns of data indicate intraloop and loop measurements. The first three measurements, which show intraloop data, are valid only for terminal loops. TDS, MFS, and CONF loop values are always zero as they do not use intraloop measurements. The six columns are as follows:

- FTM (failure to match) increments when an intraloop connection cannot be made because all timeslots are busy.
- CCS shows the total time (in hundreds of call seconds) that two timeslots are busy in the same loop.
- PC (peg count) increments when an intraloop connection becomes idle.
- Loop FTM increments for the total loop when a connection between two terminals cannot be made.
- Loop CCS shows the total time that timeslots were busy for a loop.
- Loop PC indicates the total number of times that a connection was idled for the loop.

TFS001 may count incomplete or unsuccessful calls as well as successful ones. TFS001 does not count calls that use End-to-End Signaling (EES). The sections on <u>Terminal loop</u> measurements on page 33, <u>Conference loop measurements</u> on page 35, and <u>Service loops</u> on page 37 describe this information in greater detail. See <u>Table 1: TFS001 networks</u> report format on page 37 for the TFS001 report format.

Intraloop and loop FTM should be zeros. Any failure to match indicates a load balance problem. The call seconds should not exceed 3500, and all terminal loops should have similar CCS counts (within 100 CCS of one another). Total loop blockage should be less than 1 percent; although, blockage on an individual loop may exceed 1 percent.

To solve blockage and load problems, redistribute terminals and CCS over loops. Overloaded loops should not get new trafic, and it may be desirable to add a shelf or a loop (if the average loop CCS exceeds 660).

Terminal loop measurements

This section gives a detailed description of each field in each report.

Loop number

The loop number that is being measured.

Loop type

The type of network being measured (Phantom loop, terminal loop, TDS or MFS Sender loop, or conference loop).

Note:

For information on Phantom loops, refer to *Avaya Features and Services Fundamentals*, *NN43001-106*.

Intraloop failure to match (FTM)

When two terminals on the same loop fail to match, loop FTM increments twice (once for each terminal) and intraloop FTM increments once. Intraloop FTMs indicate whether blockage occurred on a single loop or among many loops. Lessening traffic can ease most intraloop and interloop FTMs.

For Digital Trunk Interface (DTI) loops, the FTM increments only once.

Intraloop usage

When two points on the same loop connect, call usage is added twice to loop usage (once per timeslot) and once to the intraloop usage.

Intraloop peg count

If two connection points on the same network loop are idled, the loop peg count increments twice, once for each terminal, and the intraloop peg count increments once. These measurements plus the interloop measurements show the actual system loop usage.

Loop FTM

The loop FTM increments when the following conditions occur:

- A terminal to terminal connection is blocked. In this case, the loop FTM of both network loops increments.
- A terminal or Digitone Receiver (DTR) to service loop path is blocked. An FTM is counted on both the service loop and the terminal loop. No call can generate more than two FTMs.
- A single-line telephone to DTR path is blocked. An FTM is counted on both the DTR loop and the terminal loop. For any one call, at most one pair of FTMs per blocked idle DTR can occur. After the first pass at all DTRs, further attempts to find an idle DTR and a path to it (the system tries again automatically) are not counted as additional loop FTMs.
- A terminal loop to conference loop connection is blocked when any party tries to form a new conference or to add a new conferee to an existing conference.

Loop usage

The loop usage gives the total time that loop timeslots were busy. This measurement reflects the switch condition.

- Switches with 800 to 900 CCS on superloops are considered low-usage switches.
- Average use ranges from 1200 to 2000 CCS for superloops.
- High-usage switches have 2000 to 2800 CCS on superloops.

The maximum supported loop CCS for local equipment is 3500 for superloops (NT8D04).

A report whose loop CCS is greater than 1080 CCS for network loops or 4320 CCS for superloops is invalid.

Loop peg count

This measurement increments when an established path between two terminals becomes idle. Idling the paths between the terminals and DTMF or DTR loops does not increase the terminal loop peg count. Idling the paths does accumulate peg counts on the service loops.

Conference loop measurements

Other measurements apply to conference calls.

Intraloop peg count, usage, and FTM

Since all calls to a conference loop are from another loop, the intraloop measurements are always zero.

Loop FTM

The conference loop FTM increments in two cases:

- No conference loop is available for a new conference. In this case, all conference loops of the system have been checked, and the FTM counts against the last conference loop checked. Conference loops are not used in any order so the last one checked is not always the same.
- A new conferee cannot be added to an existing conference.

Loop usage

This measurement gives the total time that timeslots in this loop were marked as busy and unavailable for other use. Conference loop usage can vary greatly. Conference loops are selected randomly and are evenly distributed throughout the system.

Loop peg count

This shows the total number of people involved on a given conference loop. The loop peg count increments when an established path between the connection point and the conference loop is idle. The connection point's loop peg count is not incremented. Each person involved in the conference requires a path between the telephone and the conference loop.

When a conferee leaves a conference, a peg is made only on the conference loop. The overall effect is:

- one peg per added conferee on its terminal loop
- one peg per conferee, including the controller, on the conference loop
- one peg per added conferee on the controller's terminal loop

For example, a six-party conference gives five pegs on the terminal loop peg count, six on the conference loop, and five on the controller's terminal loop.

End-to-End Signaling Interworking does not use the conference loop, reducing traffic measurement on this loop.

Service loops

Service loops include TDS and MF senders.

Since all calls to a service loop are from another loop, the intraloop measurements are always zero.

Loop FTM

When you cannot find a path for either a tone or an outpulsing to a terminal loop or service loop, then loop FTM counts on the last service loop checked. Further attempts to provide the service to the same terminal are not counted.

Within a given network group, service loops are checked in a fixed order In normal operation, switches on the first TDS loop, which accumulates the peg and usage traffc, show high usage and those on a second loop that accumulates all loop FTM counts show low usage.

Loop usage

Loop usage gives the total time that timeslots of this loop are marked busy and unavailable for other use.

Loop peg count

This count increments whenever a path to the TDS loop becomes idle.

Table 1: TFS001 networks report format on page 37 shows the format and an example of the TFS001 network report.

Table 1: TFS001 networks report format

Format							
System ID	TFS001						
Loop number	Loop type	Intraloop FTM	Intraloop CCS	Intraloop peg count	Total loop FTM	Total loop CCS	Total loop peg count
Example							
200	TFS001						
004	TERM	00000	0000142	00161	00001	0002056	01652 S
800	TERM	00000	0000184	00180	00001	0002500	01725 S

012	TDMS	00000	0000000	00000	00013	0000031	01496
013	CONF	00000	0000000	00000	00000	0000010	00006
014	TERM	00000	0000085	00060	00006	0000544	00287
015	TERM	00003	0000064	00039	00014	0000372	00284

Note:

Superloops are identified by an "S" at the end of the line. Superloop numbers exist in multiples of four (4, 8, 12, 16, and so on). For example, if superloop 4 exists, loops 5, 6, and 7 do not.

Note:

One way to determine the grade of service provided within the listed loop, is as follows: divide the FTM by the total loop peg count + FTM and multiply by 100%.

TFS002 service loops

The TFS002 report measures the following service loops: CONF, DTR, TDS, MFS, and tone detectors. The report output differs according to the type of service. Each type of service has its own report line.

Three-digit numbers identify each service:

000	Dial Tone
001	Busy Tone
002	Overflow Tone
003	Ringback Tone
004	Tone Ringing Digital Telephones
005	Miscellaneous Tone
006	Outpulsers
007	Spare
800	Digitone Receiver
009	Conference
010	MF Tone for Automatic Number Identification (ANI)
011	System Tone Detector
012	Multi-Frequency Compelled (MFC) Trunk Signaling
013	SOCOTEL Multi-Frequency Signaling

014 **Dial Tone Detection** 015 Multi-Frequency Receiver 016 EES TDS usage 017 EES conference usage 018 MFK5, Spanish KD3 Signaling 019 MFK6, Spanish KD3 Signaling

See Table 2: TFS002 service loops report format on page 41 for the TFS002 report format.

Service failure to match (FTM)

When no path can be found between a terminal and any service loop, the FTM for that service increments. Repeated attempts to obtain a path for a service (dial tone, overflow tone, or outpulse) count as a single service FTM.

The response to the FTM varies, depending on the type of request:

- A queue forms for requests for Digitone Receivers, dial tone, overflow tone, and outpulsing connections. The system periodically searches for a network path.
- The system abandons requests for tones other than dial tone and overflow tone.
- Conference connections are replaced by overflow tone; console tone and the buzzing tone are not provided by the TDS.

Service usage

Service usage indicates the total time that the path to the service loop was busy. Peg counts for dial tone, busy tone, overflow tone, ringback tone, ringing tone, and miscellaneous tone appear per timeslot, not per call. Outpulsers accumulate usage for the duration of time spent outpulsing. The trunk circuit card, rather than the TDS card, performs the actual outpulsing.

Service request peg count

This measurement increments whenever a path between a terminal and a service loop becomes idle. The report identifies the service with a three-digit number. If the type of service is unknown, the miscellaneous tone peg count increments.

An outpulse is pegged once for the duration of outpulsing. Each outpulsed digit is not counted.

Conference measurements

TFS002 service number 9 represents the sum of all conference measurements on a per conferee basis. For example, a three-party conference for 200 seconds counts three times with usage equal to 6 CCS.

Digitone Receiver (DTR) measurements

DTR measurements reflect service failures, usage, and requests.

Service FTM

This count increments when the system cannot find a path between the originating party and an idle DTR. It does not increment in the case where idle DTRs cannot be used because of network blocking, and a subsequent idle DTR is successfully used for the call.

If the system cannot provide dial tone through a DTR, but the path between the originating party and the DTR is available, the DTR FTM increments. When the system makes repeated attempts to find a path to an idle receiver, any attempt after the first does not increment the FTM.

Service usage

This gives the time that the path between the DTR and the originating party was busy. It accumulates when that path is made idle.

Service request peg count

This count, which shows the number of DTR uses, increments when a path between a DTR and a single-line telephone, or a direct inward dial (DID) or tie trunk (receiving DTMF from the central office) is idle. The systems do not provide dial tone to 2500-type telephones until an idle DTR and network path are available. Since requests for dial tone are queued if the TDS is not available, the count reflects the number of unavailable TDS timeslots as well as DTR use. The following formula determines grade of service:

FTM ÷ (peg count + FTM)

Tone detector service

Tone detector statistics indicate service failures, usage, and requests.

Service FTM

This count increments when no path is available between an idle tone detector and a trunk.

Service usage

This count increments when the path between the tone detector and the originator is busy.

Service request peg count

This count increments when the path between the tone detector and the trunk is idled. The count reflects the total number of times the tone detectors are used.

Table 2: TFS002 service loops report format on page 41 shows the format and an example of the TFS002 service loops report.

Table 2: TFS002 service loops report format

Format			
System ID	TFS002		
Service number	Service FTM	Service usage	Service request peg count
Example			
200	TFS002		
000	00002	0000023	01650
001	00000	0000003	00099
002	00002	0000008	00321
003	00002	0000057	00951
004	00000	0000010	00168
005	00000	0000005	00068
006	00003	0000044	00376
007	00000	0000000	00000
008	00013	0000076	01471
009	00000	0000013	00069
010	00000	0000002	00012
011	00000	0000000	00000

012	00000	0000002	00022
013	00000	0000001	00003
014	00000	0000000	00000
015	00000	0000000	00000
016	00000	0000000	00000
017	00000	0000000	00000
018	00000	0000000	00000
019	00000	0000000	00000

TFS003 dial tone delay

TFS003 measurements show the number of times users waited for dial tone for longer than 1 second. The report has three columns that indicate the following:

- the number of times a user waited longer than 1 seconds for a dial tone
- the number of times a user waited longer than 10 seconds for a dial tone
- the total delay time in seconds of all calls that waited longer than 1 second

Dial tone delay should occur in no more than 1.5 percent of calls. See <u>Table 3: TFS003 dial</u> tone delay report format on page 42 for the TFS003 report format.

These counts include both successful and aborted connections. A call that is delayed for longer than 10 seconds increments both the 3-second and the 10-second counters. Dial tone delay can be caused by insufficient DTRs, network blockage, heavy CPU demands, or hardware faults.

<u>Table 3: TFS003 dial tone delay report format</u> on page 42 shows the format and an example of the TFS003 dial tone delay report.

Table 3: TFS003 dial tone delay report format

Format		
System ID	TFS003	
Delay	Delay	Total delays
> 3 seconds	> 10 seconds	< or = 1 second
Example		
200	TFS003	

00003	00001	0040
I .		

TFS004 processor load

The processor load report indicates the load on the system by showing the peg count for CPU functions:

- idle cycle count (ICC)
- total CPU attempts (CA)
- · load peak peg
- · input/output buffer overflow
- call register overflow

Refer to Table 4: TFS004 processor load report format on page 48 for TFS004 report format.

The more real-time the switch uses, the slower call processing functions operate. For this reason, it is a good idea to check this report regularly (twice a year or whenever new features are added) to ensure the system is not overloaded. The idle cycle count should be a minimum of 1 million cycles.

Parameters applicable to all releases

Reported measurements

- idle cycle count
- CPU attempts
- · load peak peg count
- high priority input buffer (HPIB) overflow peg count
- low priority input buffer (LPIB) overflow peg count
- analog (500/2500-type) output buffer (OB) overflow peg count
- SL-1 OB overflow peg count
- CR overflow peg count

Idle cycle count

The idle cycle count provides a measure of the real-time capacity used for call processing. If no higher priority call processing or I/O activity requires attention, the idle cycle count is incremented.

As the load increases, the idle cycle count decreases. As the load decreases, the idle cycle count increases.

The higher priority tasks include:

- input messages (including timing marks)
- 128 ms timing tasks (high-priority or low-priority)
- ring/queue activity
- teletype (TTY) input

Total CPU call attempts

This increments once for each of the following:

- · dial tone request
- · incoming trunk seizure
- · call originating from the attendant
- attempt by the attendant to extend a call

Load peak peg

The load peak peg count is the number of times the CPU could not process a high priority task within 128 ms. The CPU continues to perform and complete the tasks, in order of priorityuntil all the tasks are completed.

I/O buffer overloads

I/O buffer overload measures the number of times that signaling or output signals have been lost due to buffer overflow. Each peg count indicates a lost call. The buffers involved are the:

- · high-priority input buffers
- low-priority input buffers
- analog (500/2500-type) telephones output buffers

If any I/O buffer overflow count is not zero, it indicates an extreme traffic load, a hardware fault, or the given buffer is not being fully used. Refer to Avaya Communication Server 1000M and

Meridian 1 Large System Planning and Engineering, NN43021-220 for recommended buffer sizes.

Call register (CR) overflow

Call register overflow counts the number of times call processing software fails to find an idle call register. Each peg represents either a lost Call Detail Recording (CDR) record, a lost call, or an uncompleted feature. When a call or feature requires a call register and none is available, a call register transfers from the CDR queue to the call or feature. In this wayalls and features are given higher priority than CDR records. Refer to Avaya Communication Server 1000M and Meridian 1 Large System Planning and Engineering, NN43021-220 for call register provisioning guidelines.

Call capacity related parameters

Reported measurements

- rated call capacity of the system
- percentage of call capacity used for the current hour
- maximum percentage of call capacity used during the sampled period
- date and time of the maximum percentage call capacity usage during the sampled period
- number of eliminated measurements during the sampled period

Let the switch be running for N hours after the most recent sysload or initialization. Also, let the sampled period be W hours. W is the minimum of N and 168, where 168 is the number of hours in a week. The sample period is typically one week or 168 hours. Measurements are stored and analyzed over the most recent W hours.

An observation (that is, the ICC value and its corresponding CA value) is recorded once an hour. Depending on which of the four frequency options have been selected, this observation is taken on the half hour or the hour. The correspondence is as follows:

- option "0" TFS004 never printed: observation on the hour
- option "1" TFS004 hourly on the hour: observation on the hour
- option "2" TFS004 hourly on the 1/2 hour: observation on the 1/2 hour
- option "3" TFS004 half-hourly: observation on the hour

Note:

For option "3", there are two TFS004 reports for only one observation. In this case, the regression and observation fields on the 1/2 hour report show exactly the same values as were shown in the previous report, which occurred on the hour. These describe activity

during the previous hour-to-hour. The most recent half-hour's observation and regression data will not be shown until the next report, at the top of this hour, which shows the current half-hour and the upcoming one combined. The other fields in the TFS004 report that are not related to regression computation – the peak, overflowand blocked calls pegs – are still updated half-hourly and so refer only to the previous half-hour Avaya recommends that the user schedule hourly rather than half-hourly reporting if the user's interest is exclusively regression results.

After a sysload or initialization, asterisks are printed for the first 23 hours because of instant data collection. That is, if the value of N is less than 24, asterisks are printed in the above five fields of the TFS004 output. Analysis is performed after 24 hours of data collection.

Linear regression line analysis is used in the computation, assuming that (ICC, CA) pairs for different hours of the data window lie approximately on a straight line.

Noisy points typically occur when the processor is performing non-call processing tasks including management, reporting, or midnight routines. The analysis eliminates noisy points up to ceiling ($W \div 8$) data points, where ceiling (X) is a mathematical function denoting the smallest integer not less than X. Therefore, if W is equal to 70, up to 9 data points can be eliminated. However, if W is equal to 168, up to 21 data points can be eliminated.

The algorithm outputs the value of Rated Call Capacity (RCC), only when certain constraints are met. The coefficient of determination is a measure of the goodness of fit of the data points to a straight line. Numerical results are printed when either of the following two conditions are met:

- coefficient of determination is larger than or equal to 0.75
- coefficient of determination is larger than or equal to 0.55 and the ratio CA/RCC is less than or equal to 0.1

If these conditions are not met, four asterisks ('****') are printed in the fields.

Rated Call Capacity

Rated Call Capacity (RCC), determined over the most recent W hours, is a function of the idle cycle count and the number of call attempts, for every hour. As mentioned earlier, W is the minimum of N and 168, and N is the number of hours since sysload or initialization. RCC represents the maximum level at which the CPU can operate and still maintain a high grade of service.

Valid RCC computations are performed for values of W greater than 23. That is, computations are performed when more than a days (24 hours) worth of data is available.

The RCC assumes 30% peakedness during busy hours. That is, the maximum traffic peak within the busy hour is 30% higher than the average traffic level for that hour. Slight RCC variations are normal.

Percent of Call Capacity Used

Percent of Call Capacity Used (Percent of CCU) is an indicator of the load level of the system for the current hour using the following formula:

Percent of CCU = 100 x Current number of call attempts ÷ RCC

Maximum of Call Capacity Used

Maximum Percentage of Call Capacity Used (Max CCU) shows the maximum value of CCU during the previous W hours.

Max CCU = Maximum value of Percentage of CCU during the previous past W hours

Date and time of Maximum Call Capacity Used

The date and time of Maximum Call Capacity Used shows the date and time at which the maximum value of CCU occurred, which is the busiest time of the previous W hours. Its format is YYYY -MM -DD HH:MM...

Exception peg count

Every measurement that contains information not related to call processing activity impairs the relationship between idle cycle counts and number of call attempts, reducing the accuracy of calculations. Exception peg count indicates the number of points not considered (eliminated) in the analysis. Its largest value is ceiling (W ÷ 8).

Line Load Control (LLC)

Line Load Control (LLC) is a manually activated feature associated with optional feature Package 105 that denies calls from designated stations. LLC can be set to:

- OFF no LLC
- F to block the first group of calls
- S to block the first and second groups of calls
- T to block the first, second, and third groups of calls

Blocked group members cannot originate internal or trunk calls.

LD 02 defines blocking probability for LLC levels. The TFS004 report prints the blocking counts only when optional feature package 105 is equipped.

Refer to Avaya Features and Services Fundamentals, NN43001-106 for more information on LLC level definition and activation

Manual calculation of real-time load

This manual calculation should only be used if RCC and Percent of CCU are not available, since it is a less accurate approximation of the algorithm used to compute the Call Capacity Report values.

- 1. Collect TFS004 for a minimum of 12 hours.
- 2. Find the maximum idle cycle (IICC) and corresponding number of Idle Call Attempts (ICA) over the hour when the switch processes almost no calls (the most non-busy hour).
- 3. Find the minimum idle cycle (BICC) and corresponding number of Busy Call Attempts (BCA) during the busiest hour.

The RCC can be estimated using the following formula:

• RCC = $0.7 \times (BCA - BICC \times (ICA - BCA) \div (IICC - BICC))$

Where the factor 0.7 accounts for the processing overhead of the system and the 30% peakedness which is assumed.

CCU and **CCA** parameters

The Percent of CCU corresponding to BCA can be determined using the following formula:

• Percent of CCU = BCA ÷ RCC x 100

If the Percent of CCU is less than 100%, the Percent of Call Capacity Available (CCA) can be determined using the following formula:

Percent of CCA = 100 - Percent of CCU

Note:

The maximum idle cycle count is a function of the system configuration, software release, and package list. In case of software upgrades or changes to the hardware configuration, including additions of trunks or lines, the maximum idle cycle count should be recalculated. It is recommended that the maximum idle cycle count be recalculated for every traffic study.

<u>Table 4: TFS004 processor load report format</u> on page 48 shows the format and an example of the TFS004 processor load report.

Table 4: TFS004 processor load report format

Format

System ID	TFS004	
Idle cycle count	CPU attempts	Load peak peg count
HPIB overflow peg count	LPIB overflow peg count	
500/2500 OB overflow peg count	SL-1 OB overflow peg count	
CR overflow peg count		
Rated Call Capacity (see Note)	Maximum CCU	% of CCU
Number of eliminated observations (see Note)	Year Month Day of Max CCU (format: YYYY -MM -DD)	Hour and minutes (format: HH:MM)
LLC1 blocked calls	LLC2 blocked calls	LLC3 blocked calls
Example		
0377	TFS004	
000020906195	0003042	00000
00000	00000	
00000	00000	
00000		
0016829	00023	00018
00001	2009 -02 -13	18:00
00000	00000	00000

Note:

Asterisks appear in these fields when the information is insufficient to generate the report.

Call Capacity Report Enhancement

The Call Capacity Report Enhancement (CCRE) feature improves the stability and accuracy of traffic reports. The enhancement includes:

- data collection is based on seven 24-hour days
- real-time calculation improvements

The Call Capacity Report Enhancement feature does not require user operation changes. Traffic reports contain the same number of fields in the same format as the current TFS004 report with the exception of a change to the field corresponding to the time of Maximum Call Capacity Used.

TFS005 measurement on selected terminals

The TFS005 measurements are output for individual Terminal Numbers (TNs) such as telephones, trunks, or both, within a terminal loop (see <u>Table 5: TFS005 lines report format</u> on page 50). Assign the Individual Traffic Measurement (ITM) class of service to these TNs with the Traffic program (LD 02). These measurements can help analyze traffic by department or group.

The TFS005 report shows accumulated traffic for loop numbers. The report also shows the total CCS for terminals assigned an ITM COS and cumulative line peg count for each loop.

Line usage

This is the total usage for all calls in a loop for terminals set using ITMiew individual terminals to determine their usage. Totals are related to those in TFS001, although the correlation is imprecise.

Line peg count

When an established path involving a non-trunk terminal with ITM becomes idle, the line peg count increments for the terminal's loop. If both terminals in an established path have ITM, then two line peg counts are added. In addition, when an established path between a terminal and a conference loop becomes idle and the terminal has ITM, the line peg count increments for the terminal's loop.

For all trunks, the peg count increments when the trunk becomes idle if, at any time since the trunk was seized, it was involved in an established connection.

<u>Table 5: TFS005 lines report format</u> on page 50 shows the format and an example of the TFS005 lines report.

Table 5: TFS005 lines report format

Format		
System ID	TFS005	
Loop number	Line usage	Line peg count
Example		
200	TFS005	
00	0000144	00066
01	0000213	00179

02	0000232	00144
03	00000244	00130
05	00000289	00124
08	00000218	00158
10	00000229	00154

TFS007 junctor measurements

Each network group has two network shelves and 32 consecutively numbered loops. Junctors link network groups together. The TFS007 report displays measurements related to the paths that connect different network groups, involving an intergroup junctor. Measurements indicate the FTMs for each junctor, the junctor usage in CCS, and a peg count of network group connections.

Each network group must be connected to all the other network groups. The two-digit junctor number that appears in the first column of the report signifies which two groups are connected:

- network group 0 contains loops 0 to 31
- network group 1 contains loops 32 to 63
- network group 2 contains loops 64 to 95
- network group 3 contains loops 96 to 127
- network group 4 contains loops 128 to 159
- network group 5 contains loops 160 to 191 (Large Multi Group systems)
- network group 6 contains loops 192 to 223 (Large Multi Group systems)
- network group 7 contains loops 224 to 255 (Large Multi Group systems)

For example, junctor 02 connects network group 0 (loops 0 to 31) and network group 2 (64 to 95).

Table 6: TFS007 junctors on page 51 shows the format and an example of the TFS007 junctors.

Table 6: TFS007 junctors

Format			
System ID	TFS007		
Junctor group	Junctor FTM	Junctor usage	Junctor peg count
Example			
222	TFS007		

01	00001	0001642	01554
02	00001	0001696	01852
12	00002	0001712	01518

Junctor FTM

The junctor FTM counts the failures to establish a connection between network groups. The junctor FTM increments the peg count at the originating loop, the junctor group, and the terminating loop. Blockage in a junctor group should not exceed 1 percent. Determine junctor blockage with the following formula:

Junctor FTM ÷ (junctor peg count + FTM) x100

Junctor usage

This measurement gives the total time in CCS that timeslots of the junctor group were busy and unavailable for other use. Low usage is approximately 500 CCS per group and high usage is approximately 1700 CCS. Two-group network systems usually have higher usage than larger systems because fewer connections are available.

If junctor loads are unbalanced, it may be desirable to redesign network groups. Departments with a high level of intercommunication should be in the same network group, separated on different loops. Outgoing trunks on a given route should be spread across groups. DTRs should also be spread across groups.

Junctor peg count

The junctor peg count shows completed calls between network groups. Connections to tone and digit loops do not affect the peg count. The junctor peg count increments when the connections between network groups become idle.

TFS008 Command Status Link and Application Module Link measurements

TFS008 gives traffic statistics related to Command Status Link (CSL) and Application Module Link (AML). The CSL handler tracks every incoming and outgoing message for each CSL message type. The counts appear on the traffic report and are kept by the CSL handler whether or not a traffic report is scheduled. The traffic report can be configured using LD 02 to appear every hour on the hour or half hour. Refer to Table 7: TFS008 CSL and AML measurements

report format on page 53 for the format and an example of the TFS008 report and also refer to <u>Legend for TFS008 report</u> on page 54 for the TFS008 report legend.

Table 7: TFS008 CSL and AML measurements report format

Format											
System- ID	TFS0	08									
SYSTE M			iqsys ovlf	oqsys ovlf	syscr unavl	avgiq sys	avgiq call	avgiq admi n			
CSL											
csl#	vasi d	fails	link stop	down time	avgo q size	iochr ovfl	eobf miss	eobf prem	inval prior	inval Ingth	
OMSG	cas uts cala ns icc dta	crs tnm n cald s ias disr eq	pci conf m usm itc disre s	ans data ceq init itrq	dis audit cab isis sfr	dnp cts setftr iei iacs	digit dsi mon icss idcs	tmg timst p iqs sfn iodn	tst query its conre q irqs	mwi ovd iss conr es idsn	iumfs
IMSG	con opr cala ns cdd	incl gts cald s conr eq	rls tnmn setftr conr es	offh alrm mon dta	rdy conf m iqr disre q	nrdy data itr disre s	msi audit isr iacr	msb rtsc isi idcr	conf timst p iei irqr	mwi quer y icsr iufmr	
PRI	pri1	pri2	pri3	pri4							
TRAF	aaa a	bbb b	cccc	dddd	eeee						
FLOW	ffff	999 9	hhhh	iiii	زززز	kkkk					
PKTS		outp ut	input								
Example											
0111	TFS0	08									
SYSTE M			0000 4	0000 0	0000 3	0036 0	0000	0045 6			
CSL											
CSL01	000 10	000 21	0003 2	0004 3	0005 4	0000	0002 6	0008 9	0033	0022	

Format											
OMSG	000 01 000 10 000 09 000 00 000 05	000 02 000 14 001 57 000 00 000	0000 3 0002 8 0002 1 0000 0 0000	0000 4 0004 0 0000 0 0009 9 0008 6	0000 5 0003 4 0006 5 0000 0 0032 7	0000 6 0002 5 0000 0 0000 0 0184 3	0000 7 0006 7 0000 0 0000 0 0031 9	0000 8 0001 6 0000 0 0000 0	0000 9 0002 8 0000 0 0000 1 0055 2	0001 0 0000 1 0000 0 0000 0 0000	0000
IMSG	000 04 000 10 000 09 000 00	000 03 000 14 001 57 000 00	0000 5 0002 8 0000 0 0000 1	0000 6 0004 0 0000 0 0000 5	0004 3 0003 4 0000 0 0000	0000 2 0002 5 0000 0 0000	0000 6 0006 7 0000 0 0190	0000 9 0001 6 0000 0 0170	0001 9 0002 8 0000 0 0000 3	0000 7 0000 1 0000 0 0000	
PRI		006 32	0007 8	0040 0	0006 7						
TRAF	000 00	000 00	0000	0000	0000						
FLOW	000 00	000 00	0000	0000	0000	0000					
PKTS		000 20	0001 2								

Legend for TFS008 report

SYSTEM

iqsys ovfl input queue overflow oqsys ovfl output queue overflow

syscr unavl system resource not available

avgiq sys average input queue size for system messages

avgiq call average input queue size for call processing messages avgiq admin average input queue size for administration messages

CSL

csl# Command Status Link (CSL) port number

TFS008 Command Status Link and Application Module Link measurements

vasid value-added server ID associated with this link

fails number of CSL output failures link stop number of times the link stopped

down time link down time in seconds avgoq size average output queue size

iochr ovfl number of times IOCHAR TTY buffer overflowed
eobf miss number of packets with End of Block flag missing
eobf prem number of packets with End of Block flag premature

inval prior number of packets with invalid priority inval lngth number of packets with invalid length

OMSG/IMSG—outgoing/incoming message types

alrm alarm indication
ans call answered
audit software audit

cab call abandons queue

calans call answer

calds call disconnect

cas channel assignment cdd control display digits ceq call enters queue

con call connect

conf conference request

confm confirmation

conreq network layer connect request conres network layer connect response

crs call connection request
cts change terminal status
data administration data block

digit dialed digits
dis call disconnect

disreq network layer disconnect request

disres network layer disconnect response

System traffic reports

dnp DN update

dsi device state information

dta network layer data
gts get terminal status
iacr acquire request
iacs acquire response

ias the number of statistics messages

icc the number of incoming call indication messages

icsr the number of check/change call detail recording (CDN) state

requests

icss the number of check/change call detail recording (CDN) state

response messages

idcr deacquire request idcs deacquire response

idsn ATB on/off for acquire route

iei the number of error indications sent (output messages [OMSG])

iei the number of error indications (input messages [IMSG])

incl incoming call accepted

init the number of system initialization indication messages

iodn acquired device removed

iqr the number of queue requests

iqs the number of queue request response messages

irqr query request

irqs query request response

isi the number of start up/shut down indications

isis the number of start up/shut down indication response messages

isr the number of statistics requests

its the number of statistics response messages itc the number of treatment completed messages

itr the number of treatment requests

itrq return to queue

its the number of treatment response messages

iumfr update message Filter Bitmap request

iumfs update message Filter Bitmap response

mon monitor

msb make set busy

msi make set in service

mwi message waiting indication change

nrdy not ready offh off-hook

opr operator revert

ovd override

pci present call

query query rdy ready

rls call disconnect request

rtsc request terminal status change

setftr set feature message
sfn set feature notification

sfr set feature timstp timestamp

tmg telset message

tnmn TN maintenance mode tst telset status message

usm unsolicited status message

uts update terminal status

PRI number of messages of priority 1 to 4 (excluding polling messages)

TRAF

aaaa average MSDL AML incoming usage
bbbb peak MSDL AML incoming usage
cccc average MSDL AML outgoing usage
dddd peak MSDL AML outgoing usage

eeee time since last query traffic on MSDL card

FLOW To prevent any application from typing up buffer resources due to

abnormal conditions or misbehavior, a flow control mechanism is

defined in the system and at the card level. This flow control mechanism only applies to the normal interface (receive and transmit ring buffers, not the expedited interface).

This flow control mechanism is based on a common "window" mechanism. The basic concept is that the number of outstanding messages that are associated with a Socket ID in the transmit or receive ring cannot exceed a predefined number, "application threshold". Note that the mechanism is based on the number of messages per application rather than the number of buffers per application.

ffff first flow control hit starts a 128 ms timer to allow one more try

gggg second flow control hit requests the sending of OK_TO_SEDN_REQ

message using a logged SSD message to MSDL loadware. Start the

128 ms timer

hhhh The third flow control hit asks the data socket to be resynchronized

by MSDL loadware. Start the 128 ms timer.

iiii fourth flow control hit starts a 128 ms timer such that the link is forced

to disable after time out

iiii number of times outgoing ssd is lost or is not sent on time (MSDL

only)

kkkk number of times AML is reset (MSDL only)

PKTS number of incoming and outgoing packets

TFS009 D-channel

TFS009 reports traffic activity for D-channels. Eight fields report activity on the Multi-purpose Serial Data Link (MSDL) D-channel. Nine fields report activity associated with the QSIG Path Replacement feature.

The D-channel Expansion feature increases the total number of possible D-channels in a Multi Group system. The number of physical I/O addresses permitted for D-channel application is 16 for each network group. For each MSDL physical I/O address, up to four ports are available for D-channel use. With the D-channel Expansion feature, the software supports up to 255 D-channels.

For more information on the D-channel Expansion feature, refer to the Avaya ISDN Primary Rate Interface Fundamentals, NN43001-569 and Avaya ISDN Basic Rate Interface Fundamentals, NN43001-580.

See <u>Table 8: TFS009 D-channel report format</u> on page 59 for the format of the TFS009 report and also refer to the TFS009 report legend on <u>Legend for TFS009 report</u> on page 60.

Table 8: TFS009 D-channel report format

System ID DCH x	TFS009	
aaaa		nnnn
bbbb		0000
cccc		pppp
dddd		qqqq
eeee		rrrr
ffff		ssss
9999		
hhhh		tttt
iiii		
زززز		uuuu
tat1 (MSDL)		tat2 (MSDL)
FLOW FLOW	a FLOWb	FLOWc FLOWd
kkkk (MSDL)		vvvv (MSDL)
IIII (MSDL)		wwww (MSDL)
mmmm (MSDL)		xxxx (MSDL)
уууу		
DIV_NB (QSIG)	DIV_NEW (QSIG)	DIV_OLD (QSIG)
CNG_NB (QSIG)	CNG_NEW (QSIG)	CNG_OLD (QSIG)
CON_NB (QSIG)	CON_NEW (QSIG)	CON_OLD (QSIG)

Note:

All fields below FLOW are printed only if both DCH_ON_MSDL and DCH_ENABLED are configured.

All fields below FLOW are not printed if DCH_ON_MSDL is configured and DCH ENABLED is not configured. Instead, NO MSDL DAA RECEIVED is printed below FLOW.

Legend for TFS009 report

SY	S	TE	ΞM

aaaa number of all incoming messages received on the D-channel bbbb number of all incoming call processing messages received on the Dchannel CCCC number of all incoming management messages received on the Dchannel dddd number of all incoming maintenance messages received on the Dchannel average number of incoming bytes per message eeee ffff accumulated real time a D-channel was busy transferring incoming messages in half-millisecond units (Divide the reported number by 2 for a result in milliseconds. For example: divide a reported number of 200 by 2 for a result of 100 milliseconds.) running average of the number of requests queued in request output gggg message buffer hhhh number of times when no request output message buffer was available iiii number of PRA layer-3 protocol errors since the last traffic report number of times the D-channel was down jjjj number of established call-independent connections уууу average incoming link usage (given as a percentage of the link capacity) kkkk Ш average outgoing link usage (given as a percentage of the link capacity) number of connected calls mmmm nnnn number of all outgoing messages sent on the D-channel number of all outgoing call processing messages sent on the D-channel 0000 number of all outgoing management messages sent on the D-channel pppp qqqq number of all outgoing maintenance messages sent on the D-channel rrrr average number of outgoing bytes per message accumulated real time a D-channel was busy transferring outgoing SSSS messages in half-millisecond units (Divide the reported number by 2 for a result in milliseconds. For example: divide a reported number of 200 by 2 for a result of 100 milliseconds.)

tat1

channel traffic was last cleared

total number of anti-tromboning operations attempted since the D-

		Number of optimization requests with the diversion trigger
	tttt	number of times a message with no End of Message (EOM) mark was received
	uuuu	accumulated real time the D-channel was down since the last report in units of 2 seconds. For example, if the value is 10, the down time is 20 seconds
	VVVV	peak incoming link usage (given as a percentage of the link capacity) over a 5-second period
	www	peak outgoing link usage (given as a percentage of the link capacity) over a 5-second period
	xxxx	time (in seconds) since the MSDL D-channel traffic was last cleared
	tat2	total number of successful anti-tromboning operations since the D-channel traffic was last cleared
	CNG_NB	Number of optimization requests with the congestion trigger
	CNG_NEW	Number of optimization successful with the congestion trigger: a new path is used
	CNG_OLD	Number of optimization successful with the congestion trigger but the old path has been retained
	CON_NB	Number of optimization requests with the connected trigger
	CON_NEW	Number of optimization successful with the connected number trigger: a new path is used
	CON_OLD	Number of optimization successful with the connected number trigger but the old path has been retained
	DIV_NB	Number of optimization requests with the diversion trigger
	DIV_NEW	Number of optimization successful with the diversion trigger: a new path is used
	DIV_OLD	Number of optimization successful with the diversion trigger but the old path has been retained
FLC)W	To prevent any application from tying up buffer resources due to its abnormal conditions or misbehavior, a flow control mechanism is defined in the system and at the card level. This flow control mechanism only applies to the normal interface (receive and transmit ring bufers, not the expedited interface).
		This flow control mechanism is based on a common "window" mechanism. The basic concept is that the number of outstanding messages that are associated with a Socket ID in the transmit or receive ring cannot exceed a predefined number, "application threshold". Note that the mechanism is based on the number of messages per application rather than the number of buffers per application.
	FLOWa	first flow control hit starts a 128ms timer to allow one more try

FLOWb second flow control hit requests the sending of OK_TO_SEDN_REQ

message using a logged SSD message to MSDL loadware. Start the

128ms timer.

FLOWc third flow control hit asks the data socket to be resynchronized by MSDL

loadware. Start the 128ms timer.

FLOWd fourth flow control hit starts a 128ms timer such that the link is forced to

disable after time out.

TFS010 ISDN GF Transport

The GF/SS (Generic Functional protocol/Supplementary Service) call register overflow counts the number of times supplementary services or the ISDN transport are not able to find an idle call register. This peg count provides information to the field engineer for determining whether the number of call registers configured for the system needs to be increased.

<u>Table 9: TFS010 ISDN GF Transport report format</u> on page 62 shows the format and an example of the TFS010 report.

Table 9: TFS010 ISDN GF Transport report format

Format	
System ID	TFS010
GF/SS call register overflow peg count	
Example	
200	TFS010
00000	

TFS011 Multi-purpose ISDN Signaling Processor traffic

The Multi-purpose ISDN Signaling Processor (MISP) card is used for ISDN Basic Rate Interface (BRI) activities. The MISP traffic report shows the call processing activities of all Digital Subscriber Loops (DSLs) associated with each MISP in the system and indicates the type of BRI traffic such as voice, data, or packet data.

This report contains Basic Rate Signaling Concentrator (BRSC) information, if the MISP serves BRSCs. It contains the following types of information for each MISP in the system. MISP information in the four D-channel parameters shows totals for the line cards that the MISP serves directly. BRSC information shows D-channel traffic data collected at the BRSC.

Table 10: TFS011 Multi-purpose ISDN Signaling Processor traffic report format on page 63 shows the format and an example of the TFS011 report.

Table 10: TFS011 Multi-purpose ISDN Signaling Processor traffic report format

Format						
System ID TFS0	11					
MISP and BRSC ID						
Attempted calls	Complet ed calls	Call length	MISP/ BRSC message s	Terminal message s for MISP/ BRSC	MISP/ BRSC data packets	Terminal data packets for MISP/BRSC
Example						
0111 TFS011						
MISP002						
00020	00006	00019	08000	00040	00000	00006
MISP004						
00030	00001	00030	00125	00060	00180	00012
BRSC						
24 0 15			005110	001020	003600	000200

Attempted calls (MISP only)

Number of attempted calls, including all successfully completed calls and incomplete attempted calls.

Completed calls (MISP only)

Number of successfully completed calls for the reported period.

Call length (MISP only)

Average length of a successfully completed call in seconds.

MISP/BRSC messages

Number of signaling messages sent by the MISP, the BRSC, or both to the terminals on the D-channels.

Terminal messages

Number of signaling messages sent by the terminals to the MISP, the BRSC, or both on the D-channels.

MISP/BRSC data packets

Number of D-channel data packets sent by the MISP, the BRSC, or both to the terminals.

If the MISP is configured with BRSCs, a separate report prints for each BRSC.

Terminal data packets

Number of D-channel data packets sent by the terminals to the MISP, the BRSC, or both.

In the sample report in <u>Table 10: TFS011 Multi-purpose ISDN Signaling Processor trafic report format</u> on page 63, MISP004 serves a BRSC.

TFS012 Multi-purpose ISDN Signaling Processor Dchannel

The Multi-purpose ISDN Signaling Processor (MISP) card is used for ISDN Basic Rate Interface (BRI) activities. The MISP D-channel management messages check for communication problems between the MISP and the terminals. The report contains the traffic management activity for each DSL based on the exchange of signaling messages between the MISP and the terminals over the D-channels.

This report contains MISP and BRSC information for MISPs that serve BRSCs. In TFS012, the report indicates the total for line cards that the MISP serves directly. BRSC information shows D-channel data collected at the BRSC.

<u>Table 11: TFS Multi-purpose ISDN Signaling Processor D-channel report format</u> on page 65 shows the format and an example of the TFS012 report.

Table 11: TFS Multi-purpose ISDN Signaling Processor D-channel report format

Format					
System ID TFS0	12				
MISP/ BRSC ID					
MISP/ BRSC links	Terminal links	MISP/ BRSC messages	Terminal messages	Incomplete calls	Link errors
Example					
0111 TFS012					
MISP	002				
00010	00015	00010	00016	00011	00002
MISP	004				
00001	80000	00016	00009	00017	00001
BRSC	24 0 15				
000004	000012	000021	000089	000061	00021

MISP/BRSC links

Number of MISP/BRSC-initiated link initializations.

Terminal links

Number of terminal-initiated link initializations.

MISP/BRSC messages

Number of management messages sent from the MISP, the BRSC, or both to terminals.

Terminal messages

Number of management messages sent from terminals to the MISP, the BRSC, or both.

Incomplete calls

Number of times the links associated with D-channels were not able to complete calls.

Link errors

Number of management data link errors.

If the MISP is configured with BRSCs, a separate report prints for each BRSC.

<u>Table 12: TFS013 Multi-purpose ISDN Signaling Processor Messages report format</u> on page 66 shows an MISP004 serving a BRSC.

TFS013 Multi-purpose ISDN Signaling Processor messages

The Multi-purpose ISDN Signaling Processor (MISP) card is used for ISDN Basic Rate Interface (BRI) activities. The MISP messages report shows the total number of call processing, maintenance, and management messages sent through each MISP in the system grouped by message size. Maintenance technicians analyze these totals to determine if messages are within the specified lengths.

This report includes BRSC information for MISPs that serve BRSCs. The MISP information shows totals for the line cards that the MISP serves directly. BRSC data reflects D-channel information collected at the BRSC.

The report has three columns, as defined below:

- 1–10 bytes Total number of messages from 1 to 10 bytes long.
- 11–20 bytes -Total number of messages from 11 to 20 bytes long.
- Greater than 20 Total number of messages more than 20 bytes long.

A sample report appears in <u>Table 12: TFS013 Multi-purpose ISDN Signaling Processor</u> <u>Messages report format</u> on page 66. If the MISP is configured with BRSCs, a separate report prints for each BRSC.

Table 12: TFS013 Multi-purpose ISDN Signaling Processor Messages report format

Format System ID TFS013 MISP/BRSC ID

1–10 bytes	11–20 bytes	> 20
Example		
0111 TFS013		
MISP: 002		
00060	00000	00000
MISP: 004		
00012	00004	00000
BRSC: 024 0 15		
00004	00002	00000

TFS014 ISDN BRI trunk DSL system report

The ISDN BRI trunk DSL system traffic report (TFS014), dedicated to ISDN BRI trunk DSLs, provides traffic measurement similar to the one provided by the ISDN PRI system traffic report. The report contains the following information for each MISP in the system.

Table 13: TFS014 ISDN BRI trunk DSL report format on page 67 shows the format of the TFS014 report.

Table 13: TFS014 ISDN BRI trunk DSL report format

Format	
System ID	TFS014
MISP ID	
Total number of outgoing maintenance messages	Total number of incoming maintenance messages
Total number of outgoing administration messages	Total number of incoming administration messages
Total number of outgoing protocol messages	
Total number of Layer 3 protocol messages	
Total number of Layer 2 protocol messages	
Total number of Layer 1 protocol errors	
Total number of connected calls	

TFS015 Meridian Packet Handler traffic report

The Meridian Packet Handler (MPH) report provides specific information about incoming and outgoing calls and data packets. This report is particularly useful for analyzing the flow of data over network links.

The report has ten columns as described in <u>Table 14: TFS016 output</u> on page 68.

Table 14: TFS016 output

Column	Description
aa	The loop number of the Meridian Packet Handler.
bb	The link interface type (MCU, PRI, BCH, BRIL, BRSC); up to four characters. (To determine which link interface type is listed in bb, SAT the interface using STIF command in LD 32 (Network and Peripheral Equipment Diagnostic). The interface and timeslot appear.)
СС	The timeslot number of the link on the MPH loop; four digits.
dd	Number of initializations of layer 2 link(s); up to five digits.
ee	Number of attempted incoming calls; up to five digits.
ff	Number of completed incoming calls; up to five digits.
gg	Number of attempted outgoing calls; up to five digits.
hh	Average length in seconds of a data call; up to five digits.
ii	Number of incoming data packets; up to ten digits.
jj	Number of outgoing data packets; up to ten digits.

A sample report is shown in <u>Table 15: TFS015 Meridian Packet Handler report format</u> on page 68.

Note:

The exact field sizes could not be reproduced. In the actual report, the ii and jj columns wrap to the second line.

Table 15: TFS015 Meridian Packet Handler report format

Format								·		
System ID	TFS0	TFS015								
aa	bb	СС	dd	ee	ff	99	hh	ii	jj	
Example										

0111	TFS01	5							
MPH002									
MCU	0006	0019	00040	00040	00006	00001	00360	00780	00568

TFS016 IP Phone Zone traffic report

The IP Phone Zone traffic report (TFS016) in LD 2 is created on the system to print IP Phone data at the zone level. The data is printed for the following categories at the end of each collection period on an intrazone and interzone basis, and the counters are reset after the data is printed.

For every zone in the report, TFS016 provides 23 fields of information for Interzone traffic, and then 23 fields of information for Intrazone traffic. Fields for the intrazone data are described in Table 16: TFS016 intrazone output on page 69, and fields for the interzone data are described in Table 17: TFS016 interzone output on page 70. Table 18: TFS016 IP Phone Zone traffic report on page 71 shows the format and an example of the IP Phone Zone traffic report.

Note:

All statistics are normally output as values up to five digits in length. However, on large systems (that is, systems with a large number of telephones or high traffic, or both), the cmip statistic for both intrazone and interzone can be output as a six- or seven-digit value.

Table 16: TFS016 intrazone output

Column	Description
cmi	Intrazone calls made
cbi	Intrazone calls blocked
pi	Intrazone peak bandwidth (%)
ai	Intrazone average bandwidth usage (%)
vi	Intrazone bandwidth usage threshold violations
cmip	Counts of measuring interval
cul	Counts of unacceptable latency
cupl	Counts of unacceptable packet loss
cuj	Counts of unacceptable jitter
cur	Counts of unacceptable R factor
cuerl	Counts of unacceptable Echo Return Loss

Column	Description
cwl	Counts of warning latency
cwj	Counts of warning jitter
cwpl	Counts of warning packet loss
cwr	Counts of warning R factor
cwerl	Counts of warning Echo Return Loss
ccms	Calls completed with media security.
ccnms	Calls completed without media security
cfnp	Calls failed by near end policy
cffr	Calls failed by incoming release
	Note:
	May not be due to security policy negotiation failure.
cosr	Outgoing calls switched to RTP
cisr	Incoming call switched to RTP
cfnr	Calls failed due to lack of resources (SRTP-capable DSPs)

Table 17: TFS016 interzone output

Column	Description
cmo	Interzone calls made
cbo	Interzone calls blocked
ро	Interzone peak bandwidth (%)
ao	Interzone average bandwidth usage (%)
vo	Interzone bandwidth usage threshold violations
cmip	Counts of measuring interval
cul	Counts of unacceptable latency
cupl	Counts of unacceptable packet loss
cuj	Counts of unacceptable jitter
cur	Counts of unacceptable R factor
cuerl	Counts of unacceptable Echo Return Loss
cwl	Counts of warning latency
cwj	Counts of warning jitter
cwpl	Counts of warning packet loss
cwr	Counts of warning R factor

Column	Description					
cwerl	Counts of warning Echo Return Loss					
ccms	Calls completed with media security.					
ccnms	Calls completed without media security					
cfnp	Calls failed by near end policy					
cffr	Calls failed by incoming release					
	Note:					
	May not be due to security policy negotiation failure.					
cosr	Outgoing calls switched to RTP					
cisr	Incoming call switched to RTP					
cfnr	Calls failed due to lack of resources (SRTP-capable DSPs)					

Table 18: TFS016 IP Phone Zone traffic report

Format								
System ID	TFS016							
Zone #								
Intrazone	cmi	cbi	pi	ai	vi	cmip	cul	cupl
	cuj	cur	cuerl	cwl	cwj	cwpl	cwr	cwerl
	ccms	ccnms	cfnp	cffr	cosr	cifr	cfnr	
Interzone	cmo	сро	ро	ao	vo	cmip	cul	cupl
	cuj	cur	cuerl	cwl	cwj	cwpl	cwr	cwerl
	ccms	ccnms	cfnp	cffr	cosr	cifr	cfnr	
Example								
0000 TFS	016							
Zone 000								
Intrazone	000000		000	0000000	0000000	0000000	0000000	0000000
	000000		000	0000000	0000000	0000000	0000000	0000000
	000000	0000	000 0	000000	0000000	0000000	0000000	0000000
Interzone	000000		000	0000000	0000000	0000000	0000000	0000000

	0000000	0000000	0000000	0000000	0000000	0000000	0000000
	0000000	0000000	0000000	0000000	0000000	0000000 0	000000
Zone 001							
Intrazone	0000000 0000000	0000000	0000000	0000000	0000000	0000000	0000000
	0000000 0000000	0000000	0000000	0000000	0000000	0000000	0000000
	0000000	0000000	0000000	0000000	0000000	0000000 0	000000
Interzone	0000000 0000000	0000000	0000000	0000000	0000000	0000000	0000000
	0000000 0000000	0000000	0000000	0000000	0000000	0000000	0000000
	0000000	0000000	0000000	0000000	0000000	0000000 0	000000
Note:	ion fields ar	e separated	I by one sp	pace.			

TFS101 dial tone speed threshold

The dial tone speed threshold indicates the maximum acceptable percentage (in units of 0.1 percent) of calls with dial tone delay longer than three seconds. The report compares this threshold figure to the actual percentage of calls with dial tone delay. It is also output when a threshold violation occurs on TFS002.

<u>Table 19: TFS101 dial tone speed threshold violation report format</u> on page 72 shows the format and an example of the TFS101 report.

Table 19: TFS101 dial tone speed threshold violation report format

Format		
System ID	TFS101	
Percent dial tone delay	Threshold	
Example		
200	TFS101	

00017	00015	

TFS102 loop traffic threshold

This threshold, which applies to all loops, shows loop usage in CCS per measurement period. Also output when a threshold violation occurs is a TFS001 report for all loops.

Table 20: TFS102 loop traffic threshold violation report format on page 73 shows the format and an example of the TFS102 report.

Table 20: TFS102 loop traffic threshold violation report format

Format			
System ID	TFS102		
Loop number	Loop usage	Threshold	
Example			
220	TFS102		
01	0000550	00450	

TFS105 junctor traffic threshold

This threshold, expressed in CCS, highlights junctor usage per measurement period. When the junctor traffic threshold is exceeded, the TFS007 junctor traffic report prints. The threshold is the same for all junctor groups and cannot be set for each junction group individually.

Table 21: TFS105 junctor traffic violation report format on page 73 shows the format and an example of the TFS105 report.

Table 21: TFS105 junctor traffic violation report format

Format			
System ID	TFS105	TFS105	
Junctor group	Junctor usage	Junctor usage Threshold	
Example			
222	TFS105		
13	0002341	0002000	

TFS301 initialization

A TFS301 message precedes traffic data output after an initialization. This message warns that some traffic data has been lost due to the initialization, and that the report is incomplete.

TFS302 traffic schedule changed

A TFS302 message warns that the traffic schedule was changed during the interval covered by the traffic report. Traffic report data may be invalid if the change covered dates or hours not previously scheduled or options not previously set.

TFS303 traffic measured over one hour

A TFS303 message indicates that traffic report data accumulated for more than one hour and is therefore inaccurate. For example, if reporting is scheduled to stop at 18:00 and restart at 08:00, the 08:00 report contains all data between 18:00 and 08:00 (14 hours). For an accurate report of the 08:00 to 09:00 hour, schedule reports to begin at 7:00.

TFS401 36 CCS terminals

A TFS401 message, which prints when a call disconnects, identifies connections held for more than 36 CCS but fewer than 50 CCS (between approximately 60 and 83 minutes). Although the regular traffic data measurements include the traffic data for these lengthy connections, a data analyst may decide that these calls represent abnormal usage and choose to exclude the data from statistical calculations.

TFS402 50 CCS terminals

A TFS402 message identifies connections, including data connections, that were held for 50 CCS or longer. The traffic data for these connections is not included in regular traffic measurements (pegs and usage). If network blockage occurs even though usage does not exceed recommended maximum CCS, long calls may trigger the TFS402 message. Be sure

that terminals used for long connections are evenly distributed on your network loops. If no apparent reason for the message exists, the problem may be faulty hardware.

Table 22: TFS402 message output format on page 75 shows the format and an example of the TFS402 report.

Table 22: TFS402 message output format

Format				
TFS402	CCS	TN1	TN2	TYPE
TFS402	64	002 01 09 10	039 07 05 01	11

Legend

CCS gives the connection usage in CCS.

TN1 and TN2 identify the terminal numbers. TFS001, TFS002, TFS005, TFS007, TFC001, and TFC002 figures can be adjusted for previous hours for the loops involved.

TYPE identifies how the network path was used.

- 0 dial tone
- 1 busy tone
- 2 overflow tone
- 3 ringback tone
- 4 tone ringing
- 5 miscellaneous tones
- 6 outpulsing
- 7 unknown use of a TDS
- 8 Digitone receiver
- 9 incoming trunk speech path
- 10 outgoing trunk speech path
- 11 intra-customer speech path
- 12 random trunk speech path
- 13 reserved path not used

TFS411 36 CCS peg count

TFS411 counts the connections held longer than 36 CCS but less than 50 CCS that have disconnected since the last reporting period. It also includes the total usage (CCS) on the connections if no online device is available to print TFS401 or TFS402 measurements. The TFS411 and TFS412 messages appear between threshold violations and system violations, and between system traffic measurements and customer traffic measurements. Consistently long connections may indicate lengthy data calls, hung timeslots, or hardware faults.

TFS412 50 CCS peg count

TFS412 provides a peg count of the number of connections that were held for 50 CCS or longer that have disconnected since the last reporting period. It also includes the total usage (CCS) on the connections. The TFS411 and TFS412 messages appear between threshold violations and system violations, and between system traffic measurements and customer traffic measurements. If these figures indicate a potential problem, turn on the traffic TTY and examine the TFS401 and TFS402 messages for more information. Consistently long connections may indicate lengthy data calls, hung timeslots, or hardware faults.

TFS501 and TFS502 audit messages

The Software Audit program (LD 44) outputs TFS501 and TFS502 when it releases hung timeslots. (A disconnected call does not necessarily result in a released timeslot.)

TFS501 identifies the loop number and the number of timeslots recovered. TFS502 identifies the junctor group number and the number of timeslots recovered. Data analysts should consider these warning messages when examining traffic statistics for the indicated loops.

Chapter 6: Customer traffic reports

Contents

This section contains information on the following topics:

Introduction on page 78

TFC001 networks on page 78

TFC002 trunks on page 82

Trunk traffic report options on page 82

Operating parameters on page 83

Feature interactions on page 83

Feature implementation on page 84

TFC003 customer console queue measurements on page 90

TFC004 individual console measurements on page 92

Calculate attendant performance on page 94

TFC005 feature key usage on page 96

TFC006 Radio Paging on page 98

TFC007 Call Park on page 100

TFC008 messaging and Auxiliary Processor links on page 102

Auxiliary Processor Link (APL) on page 102

Message attendant queue on page 103

Telephone status on page 103

Telephone messaging on page 104

TFC009 Network Attendant Service on page 109

TFC012 DSP peg counter for CS 1000E Systems on page 110

TFC012 DSP peg counter for CS 1000M Systems on page 111

TFC101 incoming matching loss threshold on page 112

TFC102 outgoing matching loss threshold on page 113

TFC103 average speed of answer threshold on page 113

TFC104 percent all trunks busy threshold on page 114

TFC105 ISPC links establishment report on page 115

TFC111 usage of Broadcasting routes on page 115

Introduction

LD 02 defines the different report schedules and options available for each customer.

TFC001 networks

TFC001 describes traffic details for each customer group defined in LD 15 (Customer Data Block) on a per call (not timeslot) basis, showing failures to match (FTMs), usage (CCS), peg count, partial dial counts, and abandoned call counts. See <u>Table 23: TFC001 networks report format</u> on page 81 for the TFC001 report format.

The measurements in TFC001 total half those in TFS001, as TFC001 measurements increment for established calls only and two timeslots are used per call.

The maximum blockage for incoming, outgoing, and tandem calls on your system should be 1 percent. Intracustomer blockage should not be more than 4 percent. Determine the grade of service using this formula:

• FTM ÷ (peg count + FTM) x 100

Incoming FTM

The incoming FTM increments if a call is blocked (a stage of the call cannot be completed) between the time that an incoming call is recognized and the time that the trunk is idled.

For example, if a call cannot be presented to an idle attendant because of blocking, then an incoming FTM increments. If the call is successfully presented to an attendant, but the attendant cannot extend the call to an idle terminal because of blocking, then an incoming FTM increments. The incoming FTM increments once per incoming call regardless of the type of blocking or combination of blocking.

Incoming usage

The incoming usage accumulates when an established path between any terminal and an incoming trunk is idled.

Incoming peg count

The incoming peg count increments when a seized incoming trunk that had an established connection with a terminal (other than another trunk) is idled.

Outgoing FTM

If a path to an idle outgoing trunk is not found because no timeslot was available, the outgoing FTM increments. A call can increment the outgoing FTM only once. Further attempts to secure a trunk, for example, Ring Again, do not increment the FTM.

Outgoing usage

The outgoing usage accumulates when an established path that includes an outgoing trunk is idled.

Outgoing peg count

When a trunk is seized for an outgoing call and establishes a connection with a nontrunk terminal, the outgoing peg count increments after the trunk is idled.

Intracustomer FTM

The intracustomer FTM measurement increments when a timeslot is not available between a customer's two nontrunk terminals.

Intracustomer usage

When a path is idled, the intracustomer usage number increments to show the total calls between two terminals within a single customer.

Multi-User Login

A traffic file displays and stores system reports and user reports for the Multi-User Login feature.

Intracustomer peg count

The intracustomer peg count increments when an established path between two of a customer's nontrunk terminals is idled.

Tandem FTM

Tandem FTM increments if a timeslot is not available for a path between two trunks. If two attempts to find a path between the originating trunk and an idle outgoing trunk fail, one tandem FTM is pegged.

Tandem usage

Tandem usage accumulates when an established path between two trunks becomes idle.

Tandem peg count

The tandem peg count increments when an established connection between two trunks is idled. Since a tandem call does not increment either incoming or outgoing peg counts, tandem measurements must be added once to both the incoming and outgoing measurements to obtain total incoming and outgoing FTM and peg counts.

Permanent signal

The permanent signal increments when a telephone goes off-hook but does not begin dialing within 30 seconds after receiving the dial tone.

The permanent signal increments when a 2500 telephone goes off-hook but does not begin dialing within 15 seconds after receiving the dial tone.

Abandon

The abandon count increments when a terminal goes on-hook before completely dialing a directory number or trunk access code and numberAbandon does not increment when a trunk has been seized, and the number has been partially outpulsed. It also increments when a 2500 telephone goes off-hook, but does not begin dialing within 15 seconds of receiving a dial tone.

Partial dial

Partial dial increments when a 2500 telephone goes on-hook before completely dialing a directory number or trunk access code.

Table 23: TFC001 networks report format on page 81 shows the format and an example of the TFC001 report.

Table 23: TFC001 networks report format

Format			
System ID	TFC001		
Customer number			
Incoming FTM		Incoming CCS	Incoming peg count
Outgoing FTM		Outgoing CCS	Outgoing peg count
Intracustomer FTM		Intracustomer CCS	Intracustomer peg count
Tandem FTM		Tandem CCS	Tandem peg count
Permanent signal		Abandon	Partial dial
Example			
200	TFC001		
000			
00001		0001985	01143
00002		0002909	01732
00003		0000339	00047
00000		0000046	00062
00001		00004	00002

TFC002 trunks

Each trunk group generates a TFC002 report that displays trunk usage. The TFC002 report always prints when an All Trunks Busy (ATB) condition occurs during the reported period. ATB and overflow indicate that additional trunks may be needed. See <u>Table 25: TFC002 trunks</u> report format with ISA service routes format on page 84 for the TFC002 report format.

To determine grade of service, use the following formulas:

- Outgoing CCS Number trunks working = CCS per trunk
- (CCS per trunk ÷ 36) x 100 = Grade of service

Trunk traffic report options

The options are selected in the Configuration Data Block. The options improve the accuracy of TFC002 reports. Each option can be enabled or disabled (the default condition).

Traffic Period Option

The Traffic Period Option (TPO) allows a customer to enhance the TFC002 reports to accumulate trunk usage data every traffic period instead of accumulating usage only after a call disconnects. Therefore, with this option enabled, trunk usage accumulates at the end of a traffic period even while a call is still established. This option enables the CCS associated with lengthy calls to be reported in each traffic report interval through the call duration. The peg count is reported at disconnect time.

If this option is disabled, trunk usage adds its entire duration into the traffic period in which the disconnect occurs. If the duration is longer than the 36 CCS (where CCS = 100 call seconds), but less than 50 CCS, a TFS401 message is output. Howeverthat duration is still accumulated and included in the traffic reports. If the duration is longer than or equal to 50 CCS, a TFS4032 message is output. This duration is not accumulated, and is excluded from the traffic reports.

Trunk Seizure Option

The Trunk Seizure Option (TSO) provides the ability to start accumulating statistics upon trunk seizure, rather than when the call is established.

If this option is disabled, traffic statistics begin accumulating when a call is established.

The system determines that the call is established when one of the following occurs:

- The End-of-Dialing (EOD) timer times out after the last digit is dialed
- The octothorpe (#) is dialed
- Answer supervision is received

In some situations, customers cannot match traffic reports with their carrier reports, because many carriers start accumulating statistics when a trunk is seized.

Operating parameters

The peg count occurs even if a call is not established.

If the duration of a call is less than two to four seconds, then the peg count is not accumulated. This functionality only applies when the trunk seizure option is enabled.

Feature interactions

Automatic Call Distribution (ACD)

A trunk call to an ACD DN will only be considered established once this call is answered. It is not considered established while this call is waiting in the ACD gueue. Therefore, at the end of a traffic period, if a trunk call is in the ACD queue, the Traffic Period Option will not accumulate the duration for this call.

Note:

When the duration is accumulated at disconnect or at the end of a traffic period after this call is answered, the total duration including the time the call was in the ACD queue is accumulated. This total duration may be longer than a single traffic period due to the time in the ACD gueue and a TFS401, TFS402, or TFS403 message may be output.

Music trunks

The Trunk Seizure Option is not supported on this type of trunk.

Recorded Announcement (RAN) trunks

RAN routes configured as Automatic Wake Up (AWU) are not be printed.

Feature implementation

Table 24: LD 17 Enable or disable both options on a system-wide basis.

Prompt	Response	Description
REQ	CHG	Change existing data.
TYPE	CFN	Configuration record
PARM	(NO) YES	System Parameters (Do not) change system parameters.
- TPO	(NO) YES	Traffic Period Option Enter YES to enable, NO to disable, and <cr> to keep the current value.</cr>
- TSO	(NO) YES	Trunk Seizure Option Enter YES to enable, NO to disable, and <cr> to keep the current value.</cr>

Integrated Services Access (ISA) trunks format

Two types of routes are configured for ISA trunks: ISA master routes and ISA service routes. ISA master routes are eligible for the full traffic report; the service routes only contain data for the incoming ISA peg count and outgoing ISA peg count fields. No other traffic is tracked for ISA service routes. For more information on ISA trunks also refer to *Avaya ISDN Primary Rate Interface Fundamentals*, *NN43001-569* and *Avaya ISDN Basic Rate Interface Fundamentals*, *NN43001-580*.

The TFC002 traffic report format for systems with ISA trunks is shown in <u>Table 25: TFC002</u> trunks report format with ISA service routes format on page 84.

Table 25: TFC002 trunks report format with ISA service routes format

Format	
System ID	TFC002
Customer number	
Route number	Trunk type
Trunks equipped	Trunks working
Incoming usage	Incoming peg count

Outgoing usage	Outgoing peg count
Outgoing overflow	All Trunks Busy
Toll peg count	All Trunks Busy for non-priority users
Incoming ISA peg count	Outgoing ISA peg count
VNS held usage	VNS reuse peg count
B-channel overload peg count	

Note:

ISA master routes do not include incoming All Trunks Busy for non-priority users, ISA peg count, and outgoing ISA peg count in the traffic reports.

Based on the system configuration, not all fields in the printed trafic report provide trunk usage information.

Note:

The following fields are not present in the TFC002 report for NI-2 CBC trunks: VNS held usage, VNS reuse peg count, B-channel overload peg count.

Table 26: TFC002 example report on page 85 provides an example of the TFC002 report, containing fields specific to ISA trunks described above.

Table 26: TFC002 example report

Example	
200	TFC002
007	
004	ISA
00008	00007
0000088	00046
0000114	00052
00001	00002
00006	00000
00000	00000

ISA trunks (with Trunk Seizure Option) format

The TFC002 traffic report format for systems with the Trunk Seizure Option enabled is shown in <u>Table 27: TFC002 trunks report format with Trunk Seizure Option</u> on page 86. The four modified fields are highlighted with bold lettering.

Table 27: TFC002 trunks report format with Trunk Seizure Option

Format	
System ID	TFC002
Customer number	
Route number	Trunk type
Trunks equipped	Trunks working
Incoming usage at seizure	Incoming peg count at release of seizure
Outgoing usage at seizure	Outgoing peg count at release of seizure
Outgoing overflow	All Trunks Busy
Toll peg count	All Trunks Busy for non-priority users
Incoming ISA peg count	Outgoing ISA peg count
VNS held usage	VNS reuse peg count
B-channel overload peg count	

National ISDN-2 Call By Call (NI-2 CBC) trunks format

Two types of routes are configured for NI-2 CBC trunks: NI-2 CBC master routes and NI-2 CBC service routes. NI-2 CBC master routes are eligible for the full trafic report; the service routes only contain data for the incoming usage, outgoing usage, and all trunks busy fields. No other traffic is tracked for NI-2 CBC service routes. For more information on NI-2 CBC trunks, see NI-2 CBC trunks, see NI-2 CBC trunks, see NI-2 CBC trunks, see

The TFC002 traffic report format for systems with NI-2 CBC trunks is shown in <u>Table 28:</u> TFC002 NI-2 CBC trunks format on page 86. New fields are highlighted with bold lettering.

Table 28: TFC002 NI-2 CBC trunks format

Format	
System ID	TFC002

Customer Number

Route Number

Trunk Type

Trunks equipped

Incoming usage

Outgoing usage

Outgoing overflow

Trunks working

Incoming peg count

Outgoing overflow

All trunks busy

Toll peg count

Outgoing CBC peg count

Note:

Incoming CBC peg count

For an NI-2 CBC master route, 'CBCT' is output in the Tunk Type field. For an NI-2 CBC service route, one of the following is output in the Trunk Type field, based on the trunk type of the route: FEX, TIE, CO, DID, or WATS.

Note:

The following fields are not present in the TFC002 report for NI-2 CBC trunks: VNS held usage, VNS reuse peg count, B-channel overload peg count.

Field Descriptions

Trunk types

TFC002 includes usage, peg count, overflow, ATB, and toll peg count for these trunk types:

ADM Data port interfacing with Data Line Card AIOD Automatic Identification of Outward Dialing CAA Common Control Switch Arrangement with ANI CAMA Centralized Automatic Message Accounting **CCSA** Common Control Switch Arrangement CO Central Office DICT Dictation DID **Direct Inward Dialing FEX** Foreign Exchange **FGDT** Feature Group D ISA Integrated Services Access MDM Modem interfacing with 500-type line card

Music

MUS

PAGE Paging

RAN Recorded Announcement

RCD Emergency Recorder

RLTM Release Link Main

RLTR Release Link Remote

TIE Tie trunks
WATS WATS lines

Trunks equipped

Trunks equipped indicates the number of trunks working in the route.

Trunks working

The number of trunks enabled in the route appears in this column.

Incoming usage

Incoming trunk usage shows CCS for each trunk and may exceed 36 CCS an hour since it includes the entire time the connection was established. A connection spanning more than one period appears in the report for the period in which it ended. This may result in an understatement of CCS reported for some periods.

Incoming peg count

A path that is eligible for the two following fields, incoming trunk usage and incoming trunk peg count, increments for the ISA service route and for the ISA master route. See *Avaya ISDN Primary Rate Interface Fundamentals, NN43001-569* and *Avaya ISDN Basic Rate Interface Fundamentals, NN43001-580* for more information. This field is followed by a blank line (as Outgoing ISA peg count).

Outgoing usage

Outgoing trunk usage increments in CCS when a trunk assigned to the customer becomes idle.

Outgoing peg count

A path that is eligible for the two following fields, outgoing trunk usage and outgoing trunk peg count, increments for the ISA service route and for the ISA master route. See *Avaya ISDN Primary Rate Interface Fundamentals, NN43001-569* and *Avaya ISDN Basic Rate Interface Fundamentals, NN43001-580* for more information. This field is followed by a blank line (as Incoming ISA peg count).

Outgoing overflow

Outgoing trunk overflow increments when no idle enabled trunk is available to respond to a trunk request, even if the request searches other routes for an idle trunk or the caller initiates Ring Again. If a trunk is idle and enabled but timeslots are not available, then outgoing trunk overflow does not increment. Use the following formula to determine route blockage:

• Overflow peg count ÷ (outgoing peg count + overflow peg count) x 100 The maximum desired blockage for a central office trunk is 1 percent, and average holding time should be approximately 2 to 3 minutes. The maximum desired blockage for most other trunks is 2 to 5 percent, with an average holding time of 4 to 5 minutes. Average trunk use is 20 CCS and 25 CCS is high trunk usage.

Outgoing trunk connections are not considered complete until the end-of-dialing (EOD) timer expires after the last digit is dialed. Connections shorter than the EOD timer do not accumulate traffic data as complete connections. End-of-dialing can be forced by pressing the pound sign (#) to override the timer.

If an outgoing trunk call disconnects before the EOD timer expires, TFS001 usage accumulates. TFS001 peg count, TFC001, and TFC002 do not increment.

All Trunks Busy

All Trunks Busy (ATB) increments when all trunks in a group (with more than one trunk) are busy. A high ATB combined with high overflow indicates system blockage. High ATB and low overflow reflect efficient system use. To calculate the percentage of calls seizing the last available trunk, use the following formula:

All trunks busy ÷ (outgoing peg count + outgoing overflow peg count) x 100

To determine blockage based on the overflow, use this formula:

Overflow peg count ÷ (outgoing peg count + overflow peg count) x 100

Toll peg count

Toll peg count for CO and FEX routes increments when the first or second meaningful digit dialed after the access code is either a "0" or a "1." (Use the NATL and TDIG prompts in LD 16: Route Data Block, Automatic Trunk Maintenance to define other digits as toll digits.) A meaningful digit is one that is not absorbed by either the system or by the connecting CO. Even if the call is abandoned after the first meaningful digit, the toll peg count increments, possibly resulting in a toll peg count that exceeds the actual number of completed calls. Determine the percentage of toll calls by using the following formula:

Toll peg count + outgoing peg count x 100

A high percentage of toll calls reflects a need to evaluate alternative routing or trunk use.

Incoming CBC peg count

This field is only output for systems with the NI-2 CBC feature enabled, and indicates the incoming peg count for an NI-2 CBC service route.

Outgoing CBC peg count

This field is only output for systems with the NI-2 CBC feature enabled, and indicates the outgoing peg count for an NI-2 CBC service route.

All Trunks Busy for non-priority users

This field is only output for FGDT, CO, FEX, WATTS, TIE, and DID trunks, if the Preference Trunk Usage package (308) and Multi Frequency Compelled package (128) are equipped, and PCAT and Trunk Usage Threshold, PTUT, are configured.

Incoming ISA peg count

The incoming ISA peg count increments for the trunk group when an incoming ISA trunk assigned to the customer becomes idle.

Outgoing ISA peg count

The outgoing ISA peg count increments for the trunk group when an outgoing trunk assigned to the customer becomes idle.

Trunk Seizure Option

If the Trunk Seizure Option is enabled, data in the fields for trunk usage depend on when the trunk is seized, not when the trunk is established. Therefore, anytime a trunk becomes busy, duration will be accumulated in the new trunk usage traffic report field.

If the Trunk Seizure Option is enabled, the fields for trunk peg count apply to all calls that seize the trunk. Therefore, whether this call is established or not, as long as the call seizes the trunk, this call is pegged in the trunk peg count traffic report field.

Virtual Network Services (VNS)

VNS held and VNS reuse fields are only output if the VNS package (183) is equipped.

B-channel overload

This field is only output for DMS-100, DMS-250, SL-100, AT&T #4 ESS, and NI-2 trunks with B-Channel Overload Control Timer (BCOT) configured.

TFC003 customer console queue measurements

TFC003 examines the treatment of calls in customer queues. It examines the following:

- speed of response
- · number of calls delayed
- · number of calls abandoned
- · average wait time of delayed calls
- average wait time of abandoned calls

Timing measurements accumulate in 2 second units and appear in 0.1 second units. The fewer the calls in the sample (fewer than ten), the less reliable the data. See <u>Table 29: TFC003</u> customer console measurements report format on page 92 for TFC003 report format.

Systems with the Centralized Attendant Service (CAS) remote feature also receive TFC003 measurements for Release Link Trunks (RLT) for both local and remote attendants.

Average speed of answer

Average speed of answer shows how long (in 0.1 seconds) a delayed call waits in the attendant queue. Attendant response time indicates how long the attendant takes to answer the call after it has been presented to a loop key on the console. Determine average answer speed with the following formula:

[(calls delayed x avg time in queue) ÷ total calls] + avg attendant response

Example

Peg count in queue = 2 Average time in queue = 3 seconds Average attendant response = 2.4 seconds Total calls = 9 Average speed of answer = $[(2 \times 3) \div 9] + 2.4 = 3.1$ seconds

The percentage of the total calls (including incoming calls, dial "0" calls, and recalls) that enter the attendant queue is not recorded, preventing analysis of the correlation between average speed of answer, average attendant response, and average time in queue.

Average attendant response

Average attendant response is the average time (in 0.1 seconds) that elapses between a call being presented to an attendant console and the attendant answering it. If the attendant answers a different call using the Incoming Call Identification (ICI) keys, time accumulates as if the call answered were the one first presented.

Calls delayed peg count

This peg count increments whenever a call is removed from the attendant gueue. A call that is removed from and then returned to the queue (because a second call was selected using an ICI) increments the measurement only once as if the first call had remained in the queue throughout. Calls abandoned at any point do not increment this count. To determine the percentage of delayed calls, use the following formula:

Calls delayed peg count ÷ (internal calls + external calls peg count) x 100

Average time in queue

The total amount of time (in 0.1 seconds) that calls spend in the attendant queue is divided by the number of calls placed into that queue. If a call is presented to the attendant but a different call is selected using the ICI keys, the time accumulated adjusts so that the ICI call appears to have been presented first.

Abandoned calls peg count

This measurement increments whenever a call leaves the attendant queue without being answered. To determine the percentage of calls abandoned, use the following formula:

Abandoned calls ÷ (internal + external console calls + abandoned calls) x 100

Average wait time of abandoned calls

This is the average time, in tenths of seconds, that a call waited before disconnecting.

<u>Table 29: TFC003 customer console measurements report format</u> on page 92 shows the format and an example of the TFC003 report.

Table 29: TFC003 customer console measurements report format

Format	
System ID	TFC003
Customer number	
Average speed of answer	Average attendant response
Calls delayed peg count	Average time in queue
Abandoned calls peg count	Average wait time of abandoned calls
Example	
200	TFC003
003	
00107	00048
00289	00079
00015	00192

TFC004 individual console measurements

These measurements examine calls by attendant, providing the total number of calls handled by each attendant console, the calculated work time per call, and the total amount of time that the console was attended. A call that is answered by an attendant, extended to an internal DN, and recalled to an attendant, appears as a new call in these measurements. See TFC004 individual console measurements report format on page 95 for the TFC004 report format.

Compare the figures in TFC004 (<u>Table 30: TFC004 individual console measurements report format</u> on page 95) with those in TFC003 (<u>Table 29: TFC003 customer console measurements report format</u> on page 92) to determine whether any problems originate with equipment or with attendants.

Peg count of internal calls handled by attendant

This measurement increments when an internal call disconnects from the console. This includes calls originated by the attendant, internal calls to the attendant (dial "0"), attendant accessing paging, and recalls from camped on or ring no answer calls. Any internal call increments this peg count when it is removed from the console, whether or not it has been extended.

The peg count for internal calls handled by the attendant plus the count for external calls handled by the attendant equals the total calls the attendant handles.

Total time spent servicing internal requests

This is the total time, in CCS, that an attendant handles active internal or outgoing calls originating in the system. (The system records the CCS after the call is removed from the console or held on the console. A held call that is reactivated accrues additional CCS.)

Peg count of external calls handled by attendant

This peg count includes calls to a Listed Directory Number (LDN) in a Direct Inward Dial (DID) system, and Central Office (CO), Wide Area Telephone Service (WATS), and Foreign Exchange (FEX) trunks that terminate on the console as well as busy DID calls that hunt to the attendant. Any internal call increments this peg count whenever it is removed from the console, whether or not it is extended.

If a call comes in, and the attendant extends it to a telephone, it is pegged as an external call. If that same call recalls back to the attendant, it is pegged again as an internal call.

Total time spent servicing external requests

This is the total time, in CCS, that an attendant has active incoming calls on the console. The accumulates when the call is removed from the console or is held on the console. A call on hold accumulates more time after it is reactivated.

Total time console is attended

This is the total time, in CCS, that the console is not in Night Service or Position Busy. Calls that originate or complete when the console is in Night Service or Position Busy do not appear in this figure.

Total time spent servicing calls

This is the total time, in CCS, that each attendant spends servicing internal (including those originated by the attendant) and external call requests, with a peg count and work time. The total time spent servicing calls may not equal the sum of the total time spent servicing internal and external requests because of approximations.

The total time a console is in use plus the total time the console is in Night Service or Position Busy is equal to the total available time.

Number of times all attendant loops are busy

This measurement increments when all loop keys on the attendant console are busy.

Attendant Alternative Answering (AAA) peg count

This measurement, indicates the total number of attempts to forward a call to AAA. For a complete description of AAA, see *Avaya Features and Services Fundamentals*, *NN43001-106*.

Successful AAA termination peg count

The termination peg count indicates the total number of successful terminations to an AAA position. For a complete description of AAA, seeAvaya Features and Services Fundamentals, NN43001-106.

Calculate attendant performance

Use the following formulas to determine attendant performance.

Total number of calls handled by the attendant

All console internal peg count + all consoles external peg count + abandoned call peg count in TFC003

Average number of calls per attendant

All attendants' total number of calls ÷ number of attendants

Percentage of delayed calls

Delayed calls peg count in TFC003 ÷ (internal peg count + external peg count for each console) x 100

Percentage of abandoned calls

(Abandoned call peg count from TFC003 ÷ total number of calls handled by all attendants) x 100

Average work time per call for all attendants

Total work time for all attendants ÷ (all attendants' internal + external peg counts) x 100

Percentage of manned time for all attendants

Total manned time for every attendant ÷ (36 x number of attendants manned) x 100 Table 30: TFC004 individual console measurements report format on page 95 shows the format and an example of the TFC004 report.

Table 30: TFC004 individual console measurements report format

Format	
System ID	TFC004
Customer number	
Attendant number	
Peg count of internal calls handled by an attendant	Total time spent servicing internal requests
Peg count of external calls handled by an attendant	Total time spent servicing external requests
Total time a console is attended	Total time spent servicing calls
Number of times all attendant loops are busy	
Total AAA attempt peg count	Successful AAA termination peg count

Example	
200	TFC004
000	
001	
00076	0000011
00167	0000017
000036	0000029
00000	
00005	0000003
002	
00057	0000012
00066	0000021
000036	0000033
00000	
00004	0000003

TFC005 feature key usage

This report looks at patterns of customer usage: which features are activated from Meridian 1 proprietary telephones or attendant consoles. Feature key usage does not include programming changes (for example, changing a Call Forward Directory Number).

<u>Table 31: TFC005 feature key usage report format</u> on page 96 shows the format and an example of the TFC005 report.

Table 31: TFC005 feature key usage report format

Format	
System ID	TFC005
Customer number	
Feature number	Peg count
Example	
200	TFC005
000	

000	00012
001	00002
002	00003
003	00015
049	00000

Each member of a conference causes an increment to the count. For example, a five-party conference pegs three times, once for each conferee added to the original two parties.

A peg count appears for each feature per specified customer Each feature has its own output line, identified by number (see <u>Table 32: TFC005 feature numbers</u> on page 97).

Table 32: TFC005 feature numbers

Number	Feature	Number	Feature
000	Auto Dial	025	Group Call
001	Call Forward	026	Auto Answerback
002	Call Pickup	027	Trunk-Mail Access Restriction
003	Call Transfer	028	Trunk to Trunk Connection
004	Call Waiting	029	Call Park
005	3-Party Conference	030	Stored Number Redial
006	6-Party Conference	031	Last Number Redial
007	Manual Signaling	032	Malicious Call Trace
008	Override	033	Enhanced Hot Line
009	Privacy Release	034	Group Pickup
010	Private Line Service	035	DN Pickup
011	Ring Again	036	Attendant End-to-End Signaling
012	Speed Call	037	Attendant Break In
013	Voice Call	038	Attendant Break In Busy Verify
014	Volume Control	039	Semi-automatic Camp On
015	Busy Verify	040	Series Call Activation
016	Barge-in	041	Ringing Change
017	Call Selection	042	see Note
018	Attendant Recall	043	End-to-End Signaling
019	Dial Intercom	044	Internal Call Forward

Number	Feature	Number	Feature
020	Message Waiting Indicator	045	Attendant Remote Call Forward
021	Message Indication	046	BRI Call Forward
022	Message Cancellation	047	Network Intercom
023	Message Center INCALLS	048	see Note
024	Attendant Overflow	049	see Note

Note:

Feature numbers 42, 48, and 49 are reserved. The peg count for these is always zero.

Note:

With Attendant Blocking of DN (ABDN) equipped, each fulfilled ABDN attempt (DN rung) increments the peg-count register under the Semi-Automatic Camp-on feature.

Note:

With Attendant Break-In (BKI) equipped, each break-in increments the peg-count register under the Busy Verify feature.

Note:

With Attendant and Network Remote Call Forward equipped, each press of the RFW key increments the peg-count register under feature number 77 in the TFC005 feature key usage report.

TFC006 Radio Paging

These measurements give the number of calls processed by Radio Paging. Table 33: TFC006 Radio Paging report format on page 98 shows the TFC006 report format and Table 34: TFC006 Radio Paging report fields on page 99 explains the contents of each field in the report.

Table 33: TFC006 Radio Paging report format

Format	
System ID	TFC006
Customer Number	
RPAS bb YS	cc dd ee ffff % Paging count cc dd ee

99 99	hh hh	iiii	jjjj		% Selection, auto/manual
kk kk	IIII	m m m	n n n	000	% Mode counts
pp pp	qq qq	rrrr	ss ss		% Average time
tttt	uu uu	VV VV			% RAN

Table 34: TFC006 Radio Paging report fields

Field	Measurement
bb	RPA system number
cccc	Request peg count
dddd	Request being blocked peg count
eeee	Request abandoned by caller
ffff	Radio Paging — preselection peg count
9999	Radio Paging — postselection peg count
hhhh	Serial Radio Paging — auto mode peg count
iiii	Serial Radio Paging — manual mode peg count
ززز	Diversion peg count
kkkk	Paging mode 1 peg count
IIII	Paging mode 2 peg count
mmmm	Paging mode 3 peg count
nnnn	Paging mode 4 peg count
0000	Paging mode 5 peg count
pppp	Radio Paging — paging time out (TATECO only)
qqqq	Parallel Radio Paging - average answer time (in 2 second units)
rrrr	Parallel Radio Paging - recall count
ssss	Average time in using paging trunk (in 2 second units)
tttt	RAN request count
uuuu	RAN request fail count
vvvv	Average RAN connect time (in 2 second units)

Radio Paging measurements

The Radio Paging measurements count each time a call is made with the preselection method (ffff), the postselection method (gggg), or the paging time limit (paging timeout) (pppp).

Parallel Radio Paging measurements

Paging Recall (rrrr) counts increments whenever an attempted paging call returns to the attendant.

Average answer time (qqqq) count is the average time that the paged calls are in queue before being answered.

Serial Radio Paging measurements

Automatic mode (hhhh) counts increments each time an automatic serial paging call is attempted.

Manual mode (iiii) counts increments each time a manual serial paging call is attempted.

TFC007 Call Park

Traffic measurement data accumulates for the following Call Park items. Seeable 35: TFC007 call park report format on page 101 for the TFC007 report format.

System Park peg count

This count identifies the number of calls parked to a System Park DN.

System Park overflow peg count

This count identifies the number of calls that could not be parked because a System Park DN was not available.

Station Park peg count

This count identifies the number of calls parked to a Station Park DN.

Parked call access peg count

This count identifies the number of parked calls successfully accessed.

Park recall peg count

This count identifies the number of parked calls that were recalled after the Call Park Recall Timer expired (defined in LD 50: Call Park and Module Telephone Relocation).

Average wait time in Call Park

This value (expressed in units of 0.1 second) reflects the average time that parked calls waited before access.

Table 35: TFC007 call park report format

Format					
System ID	TFC007				
Customer number					
System Park peg count	System Park overflow peg count		parked call access peg count	parked call recall peg count	average wait time in park in seconds
Example					
0001	TFC007				
000					
00004	00000	00000	00003	00001	00360

TFC008 messaging and Auxiliary Processor links

This report provides traffic data on messaging and Auxiliary Processor links. See <u>Table 36</u>: <u>TFC008 messaging and Auxiliary Processor links report format</u> on page 104 for the TFC008 report format and the applicable legend.

⚠ Warning:

Auxiliary Processor link (APL) and Application Module link (AML) configuration is not supported for Avaya Communication Server 1000E systems. You must have APL and AML configured in the CPP system to generate the TFC008 report. However, if you configure APL or AML on an Avaya CS 1000E system you corrupt the database and message BUG5513 prints while changing CEQU in overlay 17.

Auxiliary Processor Link (APL)

This section of the report shows the APL number and its statistics. The information about the APL includes the following:

- output queue overflow (from system to auxiliary processor)
- input queue overflow (from auxiliary processor to system)
- average output queue size
- average input queue size
- total time (in seconds) the APL was not operating
- total time (in seconds) input message call register was unavailable
- total 4-second timeouts
- total negative acknowledgments
- total out of synchronization characters received from the system

Note:

If the Intercept Computer (ICP) feature is configured on the switch, the header ICP is printed instead of APL.

Output message traffic

This information indicates the type and number of messages the system sends to the APL.

Input message traffic

This information concerns the type and number of messages the APL sends the system.

Message attendant queue

This section describes the Automatic Call Distribution DN (ACD DN) assigned to the queue, showing the ACD DN assigned as well as operation information.

- Command Status Link (CSL) Value Added Server ID (VAS ID)
- APL number
- total calls in the message attendant queue
- · total direct calls to the message attendant
- total indirect calls to the message attendant
- total number of calls redirected by the Time Overflow feature
- total abandoned calls to the message attendant
- average time calls waited before abandoning
- average delay (time spent waiting for calls ÷ number of calls answered)
- direct call processing time each message attendant spent handling answered calls to the ACD DN
- post call processing time each message attendant was in Not Ready

Telephone status

This part of the report gives information regarding the telephone usage. The information it provides includes the following:

- ACD DN
- Value Added Server ID (VAS ID)
- total telephone status calls
- total calls accessing Special Prefix (SPRE) codes
- · total call forward access calls
- total key access calls
- total unsuccessful messaging calls

Telephone messaging

This section of the report provides information about telephone messaging. The information provided includes the following:

- ACD DN
- Value Added Server ID (VAS ID)
- APL number
- total calls in the message attendant queue
- total telephone status calls
- total successful telephone status calls
- · total abandoned calls
- · total unsuccessful telephone status calls
- average telephone message processing time (in seconds)
- total telephones requesting the message attendant

Table 36: TFC008 messaging and Auxiliary Processor links report format

Format	Format Format										
System	ID		TFC008	TFC008							
Custom	er numl	ber									
APL (ICP)											
apl#	outq ovfl	inpq ovfl	avgoq size	avgiq size	down time	icr uav	to	nak	char sync h		
omsg	cas	crs	pci	ans	dis	dnp	digit	tmg	tst	mwi	
	uts	tnmn	confm	data	audit	cts	dsi	timst p	quer y	ovd	
	calan s	calds	usm	ceq	cab	setftr	mon	iqs	its	iss	
	icc	ias	itc	init	isis	iei	icss	sfn			
imsg	con	incl	rls	offh	rdy	nrdy	msi	msb	conf	mwi	
	opr	gts	tnmn	alrm	conf m	data	audit	rtsc	tmsp	quer y	
	calan s	calds	setftr	mon	iqr	itr	isr	isi	iei	icsr	
PACKE	Т		xxxxx								

MAQ											
acddn	vasid	apl#	qlngth	drct	indrt	tofin	abn	avgw t	avgdl y	dcp	рср
TST											
acddn	vasid	apl#	total calls	spre	cfw	ust	fail				
TMG											
acddn	vasid	apl#	qlngth	total calls	succ	abn	fail	avg time	rqst		

Note:

APL, PACKET, TST, and TMG sections are printed if Integrated Messaging System (IMS) package 35 is equipped, the IMS prompt in the Customer Data Block is set to YES, and the APL link is configured on the switch.

Note:

If the Intercept Computer (ICP) feature is configured on the switch, ICP is printed instead of APL.

Note:

MAQ section is printed if IMS package 35 is equipped, and the customer is an IMS customer or the ACD DN is configured for Data service.

Legend for TFC008 report

abn	total number of abandoned calls
acd dn	Automatic Call Distribution (ACD) Directory Number (DN)
APL	Auxiliary Processor Link
apl#	Auxiliary Processor Link (APL) number, if used
avg dly	the average delay equals total waiting time for all calls divided by the number of calls answered on this ACD DN (abandoned calls are not included in total)
avg time	average telephone messaging processing time in seconds
avgwt	average time (in seconds) that calls waited before being abandoned
avgiq size	average input queue size
avgoq size	average output queue size
cfw	total number of call forward access calls
char synch	input characters from processor to system out of synchronization
dcp	direct call processing time is the average time (in seconds) that each message attendant spent handling answered calls to this ACD DN
down time	total APL down time in seconds

Customer traffic reports

drct total number of direct calls to the message attendant or Voice Mail System

(VMS) processor queue

fail total number of unsuccessful telephone messaging or status calls

icr uav input message call register unavailable

imsg input message traffic count (by message type)

indrt total number of indirect calls

inpg ovfl input queue overflow (processor to system)

MAQ Message Attendant Queue

nak total number of negative acknowledgments out uav output message call register unavailable

omsg output message traffic count (by message type)

outq ovfl output queue overflow (system to processor)

PCKT output packet message count from system to auxiliary processor

pcp post call processing is the average time (in seconds) that each message

attendant or VMS processor was "not ready" per answered call to this ACD

DN

qlngth total number of calls in the message attendant queue or VMS processor

queue

rgst total number of telephone messaging calls that requested the message

attendant

spre total number of special prefix access calls

succ total number of successful telephone messaging calls

TMG Telephone Messaging

to total 4-second timeout count

tofin number of Time Overflow Calls IN; refers to number of calls redirected by

the TIME OVERFLOW feature

total calls the total number of telephone status calls

TST Telephone Status

ust total number of user key access calls

vas id the VAS ID of the associated link, if using Command Status Link (CSL)

Output messages (omsg):

cas Channel Assignment

crs Connection Request Response

pci Present Call

ans Call Answered

dis Disconnect dnp DN Update

digit Key Message Digit tmg Telephone Message

tst Telephone Status Message
mwi Message Waiting Indication
uts Update Terminal Status
tnmn Terminal Maintenance

confm Administration Confirmation

data Data Message audit Audit Message

cts Change Terminal Status
dsi Device State Information

timstp AML Time Stamp

query Server Query

ovd Overload Warning

calans Call Answer

calds Call Disconnect

usm Unsolicited Status Message

ceq Call Enters Queue

cab Call Abandons Queue

setftr Feature Invocation Message

mon Host Control Monitor of the Unsolicited Status Messages

igs Queue/Dequeue Request Response

its Treatment Request Response

iss ACD Statistics Request Response

icc Incoming Call ias ACD Statistics

itc Treatment Completed init System Initialization

isis Start Up/Shut Down Indication Response

Customer traffic reports

iei Error Indication

icss Check CDN State Response

sfn Set Feature Notification

Input Messages (imsg):

con Connection Request incl Incoming Call Accept

rls Call Disconnected Request

offh Off-hook

rdy Ready

nrdy Not Ready msi In Service

msb Make Set Busy

conf Confirmation Message

mwi Message Waiting Indication

opr Operator Revert

gts Get Terminal Status

tnmn Terminal Maintenance

alrm Alarm Message

confm Administration Confirmation

data Data Message audit Audit Message

rtsc Report Terminal Status Change

tmsp AML Time Stamp

query Server Query calans Call Answer

calds Call Disconnect

setftr Feature Invocation Message

mon Host Control Monitor of the Unsolicited Status Messages

iqr Queue/Dequeue Request

itr Treatment Request

isr ACD Statistics Request

isi Start Up/Shut Down Indication

iei Error Indication

icsr CDN Check Request

TFC009 Network Attendant Service

The traffic data for the Network Attendant Service (NAS) describes attempts to route to NAS. See <u>Table 37: TFC009 Network Attendant Service report format</u> on page 109 for the TFC009 report format.

NAS TRY

This number indicates the number of attempts to route to the Network Attendant Service (NAS).

ALT

This number is the total number of attempts to route to NAS across alternate routes.

DB

This shows the number of drop back busies over the NAS alternate route.

ALT + DB = NAS TRY

Table 37: TFC009 Network Attendant Service report format

Format		
System ID	TFC009	
Customer number		
NAS TRY		
	ALT1	DB
Example		
0000	TFC009	
087		
NAS TRY	00048	

ALT1: 00004	DB: 00000
ALT2: 00010	DB: 00003
ALT3: 00025	DB: 00000
ALT4: 00000	DB: 00006

TFC012 DSP peg counter for CS 1000E Systems

The traffic data for the DSP peg counter for CS 1000E systems describes the number of times calls were blocked on an IP Media Gateway (IPMG) due to institicient Digital Signal Processor (DSP) resources or a lack of bandwidth. See Table 38: TFC012 DSP peg counter for CS 1000E Systems report format on page 111 for the TFC012 report format.

IPMG

This field indicates that a DSP resource is part of the system. If there is no DSP resource configured on Voice Gateway Media Cards in the system, this row is not printed (see Customer 002 in the example in <u>Table 38: TFC012 DSP peg counter for CS 1000E Systems report format</u> on page 111).

ID

This field indicates the number of the IPMG.

Attempts to allocate DSP resources

This field provides the total number of attempts to allocate a DSP resource.

Lack of DSP resources

This field provides the number of times that calls were blocked due to insufficient DSP resources.

Lack of bandwidth

This field provides the number of times that calls were blocked due to insufficient bandwidth.

Table 38: TFC012 DSP peg counter for CS 1000E Systems report format

Format				
System ID	TFC012			
Customer number				
IPMG	ID	Attempts to allocate DSP resources	Lack of DSP resources	Lack of bandwidth
Example				
0000	TFC012			
001				
IPMG	00011	00010	0006	0001
IPMG	00012	00007	00004	00000
0000	TFC012			
002				

Note:

Customer 002 has no DSP resource configured on Voice Gateway Media Cards in the system, so no pegs are displayed.

TFC012 DSP peg counter for CS 1000M Systems

The traffic data for the DSP peg counter for CS 1000M systems describes the number of times calls were blocked on the CS 1000M system due to insuffcient Digital Signal Processor (DSP) resources or a lack of bandwidth. See Table 39: TFC012 DSP peg counter for CS 1000M Systems report format on page 112 for the TFC012 report format.

Attempts to allocate DSP resources

This field provides the total number of attempts to allocate a DSP resource.

Lack of DSP resources

This field provides the number of times that calls were blocked due to insufficient DSP resources.

Lack of bandwidth

This field provides the number of times that calls were blocked due to insufficient bandwidth.

Table 39: TFC012 DSP peg counter for CS 1000M Systems report format

Format			
System ID			
Customer number			
CSRV	Attempts to allocate DSP resources	Lack of DSP resources	Lack of bandwidth
Example			
0000	TFC012		
000			
CSRV	05271	00000	00000

TFC101 incoming matching loss threshold

This threshold level shows the percentage of incoming calls (expressed in units of 0.1 percent) that encounter a Failure To Match (FTM). FTMs occur when a connection between an incoming trunk and the called line or attendant fails, or when an attendant does not complete a call because timeslots are unavailable (even if the call is eventually presented). A call counts as one incoming FTM, regardless of the number of times that call completion attempts failed.

<u>Table 40: TFC101 incoming matching loss threshold violation report formaton</u> page 112 shows the format and an example of the TFC101 report.

Table 40: TFC101 incoming matching loss threshold violation report format

Format	
System ID	TFC101
Customer number	
Incoming FTM	Threshold
Example	
200	TFC101
000	

0014	00010

The threshold figure represents the desired maximum percentage of FTMs in 0.1 percent.

The TFC101 triggers a TFS001 system measurement report to assist with analysis of the problem loop.

TFC102 outgoing matching loss threshold

This threshold is based on the percentage of outgoing calls (expressed in units of 0.1 percent) that encounter a failure to match when connecting to an outgoing trunk. A call counts as one outgoing FTM regardless of further failures to complete the call. TFC102 triggers a TFS001 network report.

Table 41: Outgoing matching loss threshold violation report on page 113 shows the format and an example of the TFC101 report.

Table 41: Outgoing matching loss threshold violation report

Format	
System ID	TFC102
Customer number	
Outgoing FTM	Threshold
Example	
200	TFC102
002	
00014	00010

The threshold figure represents the desired maximum percentage of FTMs in units of 0.1 percent.

TFC103 average speed of answer threshold

The speed of answer threshold is the minimum acceptable time, in units of 0.1 second, that calls wait to be answered by the attendant. The recommended setting is 00120, which translates to 12.0 seconds. TFC103 shows the actual average speed of answerlf the average speed exceeds the threshold, the TFC003 (queue) and TFC004 (console) reports print.

<u>Table 42: Average speed of answer threshold violation report format</u> on page 114 shows the format and an example of the TFC103 report.

Table 42: Average speed of answer threshold violation report format

Format	
System ID	TFC103
Customer number	
Average speed of answer	Threshold
Example	
200	TFC103
000	
00152	000120

TFC104 percent all trunks busy threshold

This threshold level indicates the desired maximum percentage of time (in units of 0.1 percent) that all trunks in a trunk group should be busy (Only trunk groups with more than one member are measured.) The recommended maximum is 00050, which is equivalent to 5 percent. TFC104 shows the actual percentage of time that all trunks are busy.

All calls except outgoing trunk calls are considered successful as soon as they are answered or established. Outgoing trunk calls are considered successful only when the end-of-dialing timer expires or a pound sign (#) is pressed to force an end of dialing. Calculate the threshold using the following formula:

All trunks busy peg count ÷ (successful calls + overflows)

<u>Table 43: Percent all trunks busy threshold violation report</u>on page 114 shows the format and an example of the TFC104 report.

Table 43: Percent all trunks busy threshold violation report

Format	
System ID	TFC104
Customer number	
Trunk group	
All trunks busy	Threshold
Example	

200	TFC104
002	
004	
0014	00017

TFC105 ISPC links establishment report

The ISPC links establishment report provides a peg count of the number of ISPC links established by an Australian Central office for each Phantom loop for each trunk defined.

Table 44: ISPC links establishment report format on page 115 shows the format and an example of the TFC105 report.

Table 44: ISPC links establishment report format

Format	
System ID	TFC105
Customer number	
loop number	peg count
Example	
200	TFC105
003	
100	50
110	2

In the example in Table 44: ISPC links establishment report formaton page 115, the customer 003, on the system 200, has two phantom loops. The loop 100 had 50 ISPC links establishment and loop 110 had 2 ISPC link establishments.

TFC111 usage of Broadcasting routes

This report provides traffic data on the usage of broadcasting routes.

Trunk Type

This field identifies either Music (MUS) or Recorded Announcement (RAN) broadcast trunk types.

Successful Broadcast connections peg count

The number of successful broadcast connections to trunks associated with this route.

Average call duration

Average duration of broadcast connections for this route.

Average waiting time

Average waiting time (in seconds) between the RAN/MUS request and the moment RAN/MUS is given.

Maximum waiting time

Longest waiting time (in seconds) between the RAN/MUS request and the moment RAN/MUS is given.

Waiting time threshold peg count

Incremented each time this threshold (configured in the route data block) is exceeded (output as 0 if not applicable).

Number of waiting parties threshold peg count

Incremented each time this threshold (configured in the route data block) is exceeded (output as 0 if not applicable).

Broadcast connections peg count for the lowest usage trunk

For each trunk of the broadcasting route, a peg count is incremented each time the trunk reaches its broadcast connections limit (64 for a music trunk). This limit depends on the value configured for the CONN prompt in the RAN route data block. This field provides the peg count for the trunk with the lowest usage.

Broadcast connections peg count for the next to lowest usage trunk

For each trunk of the broadcasting route, a peg count is incremented each time the trunk reaches its broadcast connections limit (64 for a music trunk). This limit depends on the value configured for the CONN prompt in the RAN route data block. This field provides the peg count for the trunk with the second-lowest usage.

Broadcast connections peg count for the next to next to lowest usage trunk

For each trunk of the broadcasting route, a peg count is incremented each time the trunk reaches its broadcast connections limit (64 for a music trunk). This limit depends on the value configured for the CONN prompt in the RAN route data block. This field provides the peg count for the trunk with the third-lowest usage.

Note:

The TFC002 report (trunks report) is not modified. A trunk with one or more connections provides the same data as if only one connection was set up.

Table 45: TFC111 usage of Broadcasting routes report on page 117 shows the format and an example of the TFC111 report.

Table 45: TFC111 usage of Broadcasting routes report

Format		
System ID	TFC111	
Customer number		
Route Number	Trunk Type	
Successful Broadcast connections peg count	Average call duration	Average waiting duration
Maximum waiting time	Waiting time threshold peg count	Number of waiting parties threshold peg count

Customer traffic reports

Broadcast connections peg count for lowest usage trunk	Broadcast connections peg count for next to lowest usage trunk	Broadcast connections peg count for next to next to lowest usage trunk
Example		
0200	TFC111	
000		
031	RAN	
00817	00006	00004
00007	00000	00000
00000	00000	00002

Chapter 7: Customer network traffic reports

Contents

This section contains information on the following topics:

Introduction on page 119

TFN001 route list measurements on page 119

Route list measurements on page 120

Off-hook Queuing measurements (OHQ) on page 121

Call Back Queuing measurements on page 122

Remote Virtual Queuing measurements on page 123

TFN002 Network Class of Service measurements on page 125

TFN003 incoming trunk group measurements on page 127

Network queuing on page 127

TFN101 OHQ overflow threshold on page 131

Introduction

A switch equipped with the Network Traffic (NTRF) software package provides network traffic measurements.

TFN001 route list measurements

A route list is a programmed series of outgoing alternate trunk routes to a specific location. The maximum number of definable route lists is 64.

The routing traffic measurements in TFN001 show how often a route list was accessed, which entries in the list were used, and whether the call was successful in completing a selection or connection. Routing traffic measurements, described below, are available at both node and

main sites. See <u>Table 46: TFN001 route list measurements report format</u> on page 123 for the TFN001 report format.

Note:

Fields for features not equipped or activated always show zeros (0).

Route list measurements

A variety of measurements describe each route list.

Route list requests

This count increments each time the system selects a specific route list.

Route list requests served without delay

This measurement indicates the number of calls that did not encounter blockage or queuing. The count increments when a route list is selected, and a call is assigned to a trunk immediately The count includes expensive route acceptances.

Expensive route acceptances

Callers can choose to route a call over an expensive route by choice after being informed of the additional cost by the Expensive Route Warning Tone (ERWT). The count increments after call completion.

Route list requests standard blocking

This measurement shows calls that could not access a route or a queue. The blocked call may be given an overflow tone or a recorded announcement, or be routed to the attendant. The count increments when one of the following occurs:

- the caller's Facility Restriction Level (FRL) is not sufficient to select any route choice
- no route choice is available, and the caller is only allowed Off-hook Queuing (OHQ) but too many calls are already queued
- the call times out in the Off-hook Queue
- blocking occurs and the system cannot select another route choice, and OHQ and Call Back Queuing (CBQ) are denied

Reuse count of on hold VNS trunks

This measurement identifies the total number of calls which successfully reused an established VNS trunk on a given route (outgoing and incoming calls).

Total time VNS trunks were idle

This measurement identifies the amount of time an established VNS trunk was available for re-use on a given route.

Route list entry use

This measurement is the number of calls successfully routed over each particular route list entry (trunk route). The count increments when one of the following occurs:

- an entry is selected without being offered OHQ or CBQ
- an entry is selected after OHQ or OHQ timeout
- an entry is selected to process a CBQ call back

Off-hook Queuing measurements (OHQ)

Each route list has associated OHQ traffic measurements.

OHQ calls

This measurement identifies the number of calls that attempted to use a route list entry when facilities were unavailable. The count increments each time a call is placed in the OHQ to await facilities, including calls from stations at a node, main, or conventional main and calls made using the Direct Inward System Access (DISA) feature.

Average time in OHQ

The queue handler records the time that the call is placed in the OHQ and the time that it is removed from the OHQ. The route list accumulates this elapsed time, in units of 0.1 seconds, only under one of these conditions:

- · an entry becomes available
- the OHQ time limit expires and the call is removed from the OHQ
- the caller abandons a call while waiting in the OHQ

Quantity of calls abandoned while in OHQ

This measurement identifies the number of calls placed in the OHQ then disconnected by the caller or the OHQ timer. The count increments when a station at a node, main, or conventional main disconnects during the OHQ offer or while waiting in the OHQ.

Call Back Queuing measurements

Traffic measurements for Call Back Queuing (CBQ) are associated with each route list and identify the use of the feature.

CBQ calls

This measurement shows how many calls were offered CBQ, how many accepted the offer, and how many were placed in the CBQ. The count increments each time a call is placed in the CBQ.

Average time in CBQ

This measurement identifies the average time that calls remain in the CBQ. The measurement increments when a local station accepts the CBQ offer and places the call in the CBQ.

The queue handler stamps the time that a call is placed in the CBQ and the time that it is removed from the CBQ. The elapsed time, in units of 0.1 second, is added to the accumulating count for the route list.

Quantity of CBQ offerings

This measurement identifies the number of calls offered CBQ call backs, regardless of whether the CBQ call back was answered. The count increments when the caller is presented with the CBQ call back.

Quantity of CBQ user cancellations

This measurement identifies the number of times that a caller deactivates Ring Again to remove a call from the CBQ.

Remote Virtual Queuing measurements

If Remote Virtual Queuing (RVQ) is equipped and activated, RVQ traffic measurements appear in the TFN001 printout. Each route list has RVQ traffic measurements that identify feature use.

RVQ calls

This count increments each time the caller selects RVQ.

Average time in RVQ

This measurement tracks the elapsed time between a caller accepting the RVQ and the RVQ call placement.

The queue handler records the time that a call is placed in R/Q and the time that it is removed from RVQ, adding the elapsed time, in 0.1 seconds, to the route list's running total.

Quantity of RVQ offerings

This measurement identifies the number of RVQ calls offered RVQ call backs, regardless of whether the call back was answered. The count increments when the caller is presented with the RVQ call back.

Quantity of RVQ user cancellations

This measurement identifies the number of RVQ calls removed from the RVQ process after the user deactivates Ring Again.

<u>Table 46: TFN001 route list measurements report format</u> on page 123 shows the format and an example of the TFN001 report.

Table 46: TFN001 route list measurements report format

Format				
System ID	TFN001			
Customer numb	er			
RLST xxx	route route list list reques reques ts	expens route ive list route reques ts	reuse total count time on hold VNS trunks	

			served without delay	accept ance	standa rd blockin	VNS trunks	were idle		
	RT		route list entry use	route list entry use	g route list entry use	route list entry use	route list entry use	route list entry use	route list entry use
			TD calls	TD calls	TD calls	TD calls	TD calls	TD calls	
	OHQ	OHQ calls	time in OHQ	aband oned calls					
	CBQ	CBQ calls	averag e time in CBQ	CBQ offerin gs		CBQ user cancel			
		RVQ	RVQ calls	averag e time in RVQ	RVQ offerin gs	RVQ user cancel			
Exampl	е								
0434 TF	-N001								
000									
RLST	000	00345	00344	00012	00000	00000	00000		
	RT		00000	00000	00000	00000	00000	00000	00000
			00000	00000	00000	00000	00000	00000	00000
			00000	00000	00000	00000	00000	00000	00000
			00000	00000	00000	00000	00000	00000	00000
			00000	00000	00000	00000	00000	00000	00000
			00000	00000	00000	00000	00000	00000	00000
			00000	00000	00000	00000	00000	00000	00000
			00000	00000	00000	00000	00000	00000	00000
	OHQ	00000	00000	00000					
	CBQ	00000	00000	00000	00000				

TFN002 Network Class of Service measurements

Traffic measurements for each defined Network Class of Service (NCOS) group indicate the grade of service, in terms of blocking and queuing delaylf a grade of service is not appropriate for users in a particular NCOS group, users can be reassigned to another NCOS group, the characteristics of the existing NCOS group can be redefined, or the routing parameters can be changed. See Table 47: TFN002 Network Class of Service measurements report formation page 126 for the TFN002 report format.

Note:

Fields for features not equipped or activated always show zeros (0).

Quantity of calls attempted

This measurement identifies the total number of network call attempts by users assigned to this NCOS group.

Routing requests served without delay

This measurement identifies the number of call attempts routed without encountering blockage or being offered queuing.

Expensive route acceptances

This count increments if a user allows a call to complete over an expensive facility.

Network callstandard blocking

This measurement identifies the number of call attempts by NCOS user groups that could not be served because a route or queuing process was not available.

Calls refusing expensive routes

This measurement identifies the number of callers that received an Expensive Route Warning Tone (ERWT), and either abandoned the call or activated the Ring Again feature to place the call in the Call Back Queue.

Quantity of calls placed in OHQ

This measurement identifies the number of calls by NCOS groups that were offered Off-hook Queuing (OHQ) and accepted the offer.

Average time in OHQ

This measurement identifies the average duration, in 0.1 seconds, that calls remained in the OHQ. Calls that time out in the queue are included in the average.

Quantity of CBQ calls

This measurement identifies the number of calls that accepted CBQ.

Average time in CBQ

This measurement identifies the average time (in units of 0.1 second) that calls in this NCOS group waited in the CBQ for an available route. The measurement includes calls requesting a CBQ cancellation, calls completed, and calls initiating direct Ring Again against trunks.

Quantity of RVQ calls

This measurement identifies the number of calls accepting RVQ.

Average time in RVQ

This measurement identifies the average time (in units of 0.1 second) that calls in this NCOS group waited in RVQ for an available route. The measurement includes calls requesting RVQ cancellation, calls completed, and calls initiating direct Ring Again against trunks.

Note:

Statistics for OHQ, CBQ, RVQ, or for all three print only when the features are equipped and activated.

Table 47: TFN002 Network Class of Service measurements report format

Format

System ID								
NCOS network calls attempted service group OHQ OHQ calls average time in CBQ RVQ RVQ calls average time in RVQ TFN002 TFN002 OHQ 00007 00000 OHQ 00000 00000 RCBQ 00000 00000			1FN002					
class of service group service group attempted served without delay served without delay acceptan ces blocking standard blocking expensive e routes OHQ OHQ calls average time in OHQ RVQ RVQ calls average time in RVQ Example 0423 TFN002 NCOS 000 00207 00197 00000 00001 00000 00000 OHQ 00007 00237 CBQ 00000 00000	Customer	number						
time in OHQ CBQ CBQ calls average time in CBQ RVQ RVQ calls average time in RVQ Example 0423 TFN002 NCOS 000 00207 00197 00000 00001 00000 00000 OHQ 00007 00237 CBQ 00000 00000	NCOS	class of service		requests served without	e route acceptan	call standard		refusing expensiv
time in CBQ RVQ RVQ calls average time in RVQ Example 0423 TFN002 00 NCOS 000 00207 00197 00000 00001 00000 00000 OHQ 00007 00237 CBQ 00000 00000		OHQ	OHQ calls	time in				
time in RVQ Example 0423 TFN002 00 NCOS 000 00207 00197 00000 00001 00000 00000 OHQ 00007 00237 CBQ 00000 00000		CBQ	CBQ calls	time in				
0423 TFN002 00 NCOS 000 00207 00197 00000 00001 00000 00000 OHQ 00007 00237 CBQ 00000 00000		RVQ	RVQ calls	time in				
00 NCOS 000 00207 00197 00000 00001 00000 00000 OHQ 00007 00237 CBQ 00000 00000	Example							
NCOS 000 00207 00197 00000 00001 00000 00000 OHQ 00007 00237 CBQ 000000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 000000 000000 000000 000000 000000 0000	0423		TFN002					
OHQ 00007 00237 CBQ 00000 00000	00							
CBQ 00000 00000	NCOS	000	00207	00197	00000	00001	00000	00000
		OHQ	00007	00237				
RVQ 00000 00000		CBQ	00000	00000				
		RVQ	00000	00000				

TFN003 incoming trunk group measurements

These measurements provide an indication of the incremental traffic that network queuing features impose on incoming trunk groups.

Network queuing

Data accumulates for each incoming or two-way trunk group dered Off-hook Queuing (OHQ), Coordinated Call Back Queuing (CCBQ), or Call Back Queuing to Conventional Mains (CBQCM). These measurements are available at both the node and main switches. Sedable 48: TFN003 Incoming Trunk Group report format on page 130 for TFN003 report format.

Quantity of calls placed in OHQ

This measurement identifies the number of incoming trunk calls placed in the OHQ for possible connection to another trunk group.

Average time in OHQ

This measurement reflects the average time (in units of 0.1 second) that calls waited in the OHQ for a trunk to become available. The average time includes calls removed from the OHQ by caller abandonment or removed from the queue after expiration of the OHQ time limit.

Quantity of incoming calls offered CCBQ or CBQCM

This measurement identifies the number of blocked incoming trunk calls that were offered a node-initiated call back. The measurement tracks users at an Electronic Switched Network (ESN) main (Coordinated Call Back Queuing) or conventional main (Call Back Queuing for Conventional Mains).

Quantity of calls accepting CCBQ or CBQCM

This measurement identifies the number of blocked incoming trunk calls that accepted a node-initiated call back. The measurement tracks users at an ESN main or conventional main.

Average time in CBQ

This measurement (in 0.1 seconds) reflects the average time that main or conventional main users remained in the CBQ at the ESN node for an available facility.

When a CCBQ call back is offered to a busy station at the main, the call is removed from the queue for 5 minutes, then reinserted in the same place in the queue. This process occurs only once. The additional queuing time is included in the computation of average time. The 5-minute suspension time is not included, and reinsertion into the queue does not count as an additional CBQ call.

When a conventional main station is too busy or fails to answer a CBQCM call back, the call is removed from the queue and reinserted into the queue as specified in the preceding paragraph.

Quantity of calls blocked in call back

This measurement identifies the number of node-initiated CBQ call backs (CCBQ or CBQCM) that could not be completed because an outgoing trunk group to the main or conventional main was not available.

Call back attempts no answer and cancellation

This measurement identifies the number of call back attempts that failed because the caller did not answer the call back. CBQ call backs to a main station that previously canceled CBQ are treated as unanswered call back attempts.

Quantity of incoming calls offered RVQ or RVQCM

This measurement identifies the number of blocked incoming trunk calls that were given the option of accepting a call back. Calls from an ISDN main (Remote Virtual Queuing) or conventional main (Remote Virtual Queuing for Conventional Mains) are included in this measurement.

Quantity of calls accepting RVQ or RVQCM

This measurement identifies the number of blocked incoming trunk calls that accepted an **RQ** offer. The count includes RVQ acceptances by users at the ISDN main or conventional main.

Average time in RVQ

This measurement (in units of 0.1 second) reflects the average time that users at an ISDN main or conventional main remained in the RVQ at the ISDN node for a facility to become available.

Quantity of RVQ calls blocked in call back

This measurement identifies the number of node-initiated RVQ call backs (RVQ or RVQCM) that could not be completed because no outgoing trunk group to the ISDN main or conventional main was available.

RVQ call back attempts no answer and cancellation

This measurement identifies the number of call back attempts that failed because the caller did not respond. RVQ call backs to a station at an ISDN main that has previously canceled RVQ are treated as call back attempts not answered.

Note:

Statistics for OHQ, CBQ, RVQ, or all three print out only when the features are equipped and activated.

Table 48: TFN003 Incoming Trunk Group report format

Format						
System ID		TFN003				
Customer r	number					
TRKG	incoming trunk group					
	OHQ	calls placed in OHQ	average time in OHQ			
	CBQ	incoming calls offered CBQ, CCBQ, CBQCM	calls accepting CBQ, CCBQ, CBQCM	average time in CBQ, CCBQ, CBQCM	blocked CBQ, CCBQ, CBQCM call backs	call back attempts not answered or canceled
	RVQ	incoming calls offered RVQ, RVQCM	calls accepting RVQ, RVQCM	average time in RVQ, RVQCM	blocked RVQ, RVQCM call backs	call back attempts not answered or canceled
Example						
0423		TFN003				
000						
TRKG	003					
	OHQ	00006	00263			
	CBQ	00000	00000	00000	00000	00000
	RVQ	00000	00000	00000	00000	00000

TFN101 OHQ overflow threshold

This threshold measurement indicates that an abnormally large number of users are timing out in the OHQ because the OHQ time limit, defined in LD 16, has expired before a trunk is available. This overflow results from trunks being out of service, incorrectly defined OHQ time limits, or temporary traffic overload.

Off-hook Queuing Timer (OHQT)

The OHQT report (see <u>Table 49: TFN101 OHQ overflow threshold violation report format</u> on page 131) shows the percentage of OHQ calls that timed out (overflowed) in the OHQ before an available trunk was found. This value (in units of 0.1 percent) represents the total number of OHQ overflow, divided by the total number of OHQ offers, plus the OHQ overflows. It also shows the threshold defined in LD 16.

Table 49: TFN101 OHQ overflow threshold violation report format

Format	
System ID	TFN101
Customer number	
OHQT timed out OHQ calls	threshold
Example	
0423	TFN101
000	
00333	00000

Customer network traffic reports

Chapter 8: Traffic (LD 02)

Contents

This section contains information on the following topics:

Introduction on page 134

How to use traffic commands on page 134

Traffic report format on page 134

Setting and querying daylight savings information on page 134

Set traffic report schedules on page 135

Set system ID on page 137

System reports on page 138

Set system thresholds on page 138

Customer reports on page 139

Set customer thresholds on page 140

Network reports on page 140

Set customer for feature key usage measurement on page 141

Stop printing title, date, and time on page 141

Set traffic measurement on selected terminals on page 141

Set blocking probability for Line Load Control (LLC) on page 143

Set time and date on page 143

Set daily time adjustment on page 144

Set network time synchronization on page 144

Print last reports on page 146

Perform threshold tests on last reports on page 147

Introduction

This section discusses traffic commands and traffic measurements.

How to use traffic commands

LD 02 sets traffic options, system ID, and time and date. The following conventions help describe the traffic commands in this section.

- user entered data is shown in 'UPPER CASE'
- · system output data is shown in 'lower case'
- a period (.) prompt indicates the system is ready to receive a new command
- a double dash (--) indicates the system is ready to receive data
- a <cr> means that the user should press the Return/Enter key

Traffic report format

The beginning of a traffic report is labelled with the header message TFS000 followed by the date and time. The end of the traffic report is labelled with a footer message TFS999.

Be sure the traffic report shows both the header message and footer message as messages and threshold violations are printed at the beginning of the report.

Some of the messages or threshold violations may instruct the user to ignore the report. For example, if the system initializes, the traffic registers are cleared out. If this occurs during the traffic report period, there is no point in using the data since it is not complete.

Setting and querying daylight savings information

The daylight savings time adjustment can be programmed so that it occurs automatically on the desired dates. The system clock must have already been set. <u>Table 50: Daylight savings commands</u> on page 134 shows the daylight savings commands.

Table 50: Daylight savings commands

Command	Description and Format
FWTM BWTM	Sets the date and time for the clock changes (FWTM = spring; BWTM = fall)

Command	Description and Format
SDST	Enables or disables the automatic change feature
TDST	Queries the information using the following formats (variables are shown in brackets) FWTM <month> <week> <day> <hour> BWTM <month> <week> <day> <hour> SDST ON (OFF) TDST</hour></day></week></month></hour></day></week></month>

The month and day of week can be entered as numerics or abbreviations as shown below. The possible variable values (defaults in parentheses) are shown as follows:

```
month = 1–12 or JAN–DEC

where 1 = January and 12 = December;

4 or APR is FWTM default; 10 or OCT is BWTM default

week = 1–5, L

where 1 = the first week and L = the last week of the month;

1 is FWTM default; L is BWTM default

day = (1)–7 or (SUN)–SAT

where 1 = Sunday and 7 = Saturday

hour = 0–(2)–23

where 0 = midnight and 23 = 11 p.m.
```

Daylight savings information set by these commands survive sysload.

Examples of each daylight savings command are shown in <u>Table 51: Examples of each command</u> on page 135.

Table 51: Examples of each command

Example	Command
Set daylight savings time in the spring	FWTM 4 1 1 2 or FWTM APR 1 SUN 2
Return to regular time in the fall	BWTM 10 4 1 2
Turn on the automatic feature	SDST ON
Query the settings	TDST

Set traffic report schedules

The following commands are used to set traffic report schedules.

Print current customer report schedule

```
TSHC C sd sm ed em sh eh so d d ...
```

Print current system report schedule

```
TSHS sd sm ed em sh eh so d d ...
```

Set customer report schedule

```
SSHC C sd sm ed em -- SD SM ED EM sh eh so -- SH EH SO d d ...-D D ...<
```

Set system report schedule

```
SSHS sd sm ed em -- SD SM ED EM sh eh so -- SH EH SO d d ...-D D ...<cr>
```

The following legend applies to format fields used when configuring the customer and system traffic report schedule. Possible variable values appear in parentheses:

C = customer number (always input a space before and after the customer number)

D = day of the week:

```
1 = Sunday
```

2 = Monday

3 = Tuesday

4 = Wednesday

5 = Thursday

6 = Friday

7 = Saturday

ED = end day (1-31)

EH = end hour (0-23)

EM = end month (1-12)

SD = start day (1-31)

SH = start hour (0-23)

SM = start month (1-12)

SO = schedule options:

0 = no traffic scheduled

1 = hourly on the hour

2 = hourly on the half hour

3 = every half hour

Example To set the system report schedule: SSHS 25 4 16 7 -- 1 10 1 12 12 21 2 -- 0 23 3 2 3 4 5 6 -- 1 7<cr>

The following is an explanation of the example:

end time: July 16 at 9 P.M. frequency: hourly midnight end time: December 1 at 11 P.M. on the half hour (SO = 2) days of the week: frequency: every half hour (SO = 3) days of Monday to Friday

Old schedule start time: April 25 at 12 noon New schedule start time: October 1 at 12 the week: Saturday and Sunday

Note:

To obtain traffic reports at the scheduled intervals, the output device must have prompt USER = TRF in LD 17: Configuration Record 1. If TRF is not defined for any device, reports are still generated.

Note:

Start and end times on the half hour are not supported. Use full-hour only (use 23, do not use 23 30). Output every half hour is supported, however, using SO=3.

Set system ID

Each system has a unique System ID number (SID) of up to four digits. The ID number can be printed or set by the following commands.

Print the current SID

TSID sid

Change the SID

SSID sid -- SID

System reports

```
Print the current report types
```

```
TOPS r r ...
```

Set one or more report types

```
SOPS r r ... -- R R ... <cr>
```

Clear one or more report types

```
COPS r r ... -- R R ... <cr>
```

R = traffic report type:

- 1 = networks
- 2 = service loops
- 3 = dial tone delay
- 4 = processor load
- 5 = measurement on selected terminals
- 7 = junctor group traffic
- 8 = CSL and AML links
- 9 = D-channel
- 10 = ISDN GF Transport
- 11 = MISP traffic
- 12 = MISP D-channel management
- 13 = MISP messaging
- 14 = ISDN BRI trunk DSL system report
- 15 = MPH traffic
- 16 = IP Phone Zone traffic report

To use the print command, enter a space (not a carriage return) after the customer number If no reports are currently set, the system outputs NIL.

Set system thresholds

The system thresholds (TH) and range of values (TV) appear as percentages or CCS:

Print the current system thresholds

TTHS TH tv

Set the system thresholds

STHS TH tv -- TV

- 1 = dial tone speed (range 000 to 999)
- 2 = loop traffic (range 000 to 999 CCS)
- 3 = junctor group traffic (range 0000 to 9999 CCS) (for multi-group systems only)
- 4 = superloop traffic (range 0000 to 9999 CCS)
- 5 = zone bandwidth (range 000 to 999)

Thresholds and range of values for customer appear as percentages or seconds.

Customer reports

Print the current report types

TOPC Crr...

Set one or more report types

SOPC C r r ... -- R R ... < cr>

Clear one or more report types

COPC C r r ... -- R R ... < cr>

C = customer number – always input a space before and after the customer number.

R = traffic report type:

- 1 = networks
- 2 = trunks
- 3 = customer console measurements
- 4 = individual console measurement
- 5 = feature key usage
- 6 = Radio Paging
- 7 = Call Park
- 8 = messaging and Auxiliary Processor links
- 9 = Network Attendant Service

10 = ISPC links establishment

11 = use of broadcasting routes

12 = call blocking due to lack of DSP resource

To use the print command, enter a space (not a carriage return) after the customer number.

If no reports are set, the system outputs NIL. For TFC005, see <u>Set customer for feature key usage measurement</u> on page 141.

Set customer thresholds

Print the current customer thresholds

TTHC C TH tv

Set the customer thresholds

STHC C TH tv -- TV

1= incoming matching loss (TV range 00.0% to 99.9%)

2 = outgoing matching loss (TV range 00.0% to 99.9%)

3 = average Speed of Answer (TV range 00.0 to 99.9 seconds)

4 = percent All Trunks Busy (TV range 00.0% to 99.9%)

5 = percent OHQ overflow (TV range 00.0% to 99.9%)

Network reports

Print the current report types

TOPN Crr...

Set one or more report types

SOPN C r r ... -- R R ... < cr>

Clear one or more report types

COPN C r r ... -- R R ... < cr>

C = customer number – always input a space before and after the customer number

R = traffic report type:

1 = route list measurements

2 = network class of service measurements

3 = incoming trunk group measurements

To use the print command, enter a space (not a carriage return) after the customer number.

If no reports are currently set, NIL is output by the system.

Set customer for feature key usage measurement

Print current customer being measured

TCFT c

Set the customer to be measured

SCFT c -- C

C refers to the customer number. Only one customer can have feature measurement set at a time.

Stop printing title, date, and time

Suppress the printing of the title (TFS000), date, and time in cases where traffic measurement is scheduled but no other data is printed, by issuing the following command:

Stop printing

IDLT 0

Start printing

IDLT 1

0 = no title is printed unless further data is also printed 1 = the title is always printed

Set traffic measurement on selected terminals

These commands print, set, and clear the Individual Traffic Measurement (ITM) class of service for specific terminals, trunks, and DTI channels in traffic report TFS005.

Print the current TNs with ITM set

TITM

Example

TITM prints current settings
shelf 4 0 all units on loop 4 shelf 0 have ITM set
loop 5 all units on loop 5 have ITM set
tn 11 3 4 1 unit on TN 11 3 4 1 has ITM set
card 13 2 1 all units on card 13 2 1 have ITM set
chnl 15 21 loop 15 channel 21 has ITM set

Set ITM on terminals:

SITM

Example

SITM prints current settings) shelf 4 1 all units on loop 4 shelf 1have ITM set loop 05 all units on loop 5 have ITM set tn 11 3 4 1 unit on TN 11 3 4 1 has ITM set card 13 1 1 all units on card 13 2 1 have ITM set chnl 34 18 loop 34 channel 18 has ITM set - - 7 set ITM on all units on this loop --61 set ITM on all units on this shelf, or on channel 1 --811 set ITM on all units on this card --8111 set ITM on this unit - - 34 18 set ITM on loop 34 channel 18 - - <cr> stop "--" prompt

Clear line traffic TNs:

CITM

Example

CITM	prints current settings
shelf 4 1	all units on loop 4 shelf 1have ITM set
loop 05	all units on loop 5 have ITM set

tn 11 3 4 1 unit on TN 11 3 4 1 has ITM set card 13 1 1 all units on card 13 2 1 have ITM set chnl 34 18 loop 34 channel 18 has ITM set - - 4 1 clear ITM on all units on this loop 4 shelf 1 - - 5 clear ITM on all units on this loop - - 11 3 4 1 clear ITM on this unit - - 19 1 1 clear ITM on all units on this card - - 34 18 clear ITM on loop 34 channel 18 - - <cr> stop "--" prompt

Set blocking probability for Line Load Control (LLC)

Print current LLC level and blocking probability

TLLC

Set blocking probability

SCTL x aaa

Activate Line Load Control at level x

SLLC x

x = 1, 2, or 3 LLC level

aaa = blocking probability in percent (%)

Set time and date

Print the current time and date

TTAD day-of-week day month year hour minute second

Example

TTAD WED 24 11 1976 15 41 49

Set the time and date

STAD Day Month Year Hour Minute Second

Example

STAD 24 11 1976 15 41 49

All entries in the time-of-day output, except the year, are two-digit numbers. The year, which can be any year from 1901 to 2099 inclusive, is input as a full four-digit field (for any year between 1901 and 2099 inclusive) or in a two-digit short form (for years between 1976 and 2075).

Also see Setting and querying daylight savings information on page 134.

Set daily time adjustment

The time of day can be adjusted during the midnight routines to compensate for a fast or slow system clock.

Print the current adjustment

TDTA x y

Set the adjustment

SDTA x y -- X Y

x = 0 for negative increment and = 1 for positive increment

y = 0-60 second adjustment in increments of 100 ms

Set network time synchronization

A number of parameters can be adjusted for the Network Time Synchronization feature.

Print the current node status

TTSS

Set the node status

```
STSS <STATUS>
```

```
where <STATUS> may be:
```

(STDA) = stand-alone

MAST = Master

SLAV = Slave

Print the customer assigned to feature

TTSC

Set the customer assigned to feature

STSS C

where C is: (0) - 99 = Customer Number for Large Systems

Print the Local Virtual DN

TLDN

Set the Local Virtual DN

SLDN < DN>

• <DN> = Directory Number

Print the Master/Backup Time Synchronization Number

TMDN

Set the Master/Backup Time Synchronization Number

SMDN < DN>

• <DN> = Directory Number

Print Time Delta

TDEL

Set Time Delta

SDEL <SIGN><HR><MIN>

where

<SIGN> is the time adjust factor direction indicator which may be:

- 0 = to indicate the Master switch is behind in time
- 1 = to indicate the Master switch is ahead in time.
- <HR> = number of hours the time must be adjusted by 0 23.
- <MIN> = number of minutes the time must be adjusted by 0 59.

Print Requesting Mode

TMOD

Set Requesting Mode

SMOD < MODE>

```
where <MODE> may be:

(BKGD) = Background

DVSC = Daily Service Routines
```

Print last reports

The last traffic reports can be printed or tested against threshold values. Data accumulating for the next reports is not accessible.

Print one or more of the last customer reports

INVC C R R ...

For printing the last customer report:

C = customer number (always input a space before and after the customer number)

R = traffic report type:

- 1 = networks
- 2 = trunks
- 3 = customer console measurements
- 4 = individual console measurement
- 5 = feature key usage
- 6 = Radio Paging
- 7 = Call Park
- 8 = messaging and Auxiliary Processor links
- 9 = Network Attendant Service
- 10 = ISPC links establishment
- 11 = usage of broadcasting routes
- 12 = call blocking due to lack of DSP resource

Print one or more of the last network reports

INVN C R R ...

C = customer number

R = traffic report type:

1 = route list measurements

- 2 = network class of service measurements
- 3 = incoming trunk group measurements

Print one or more of last system reports

INVS R R ...

R = traffic report type:

- 1 = networks (per loop)
- 2 = services
- 3 = dial tone delay
- 4 = processor load
- 5 = selected terminals
- 7 = junctor group traffic
- 8 = CSL and AML links
- 9 = D-channel
- 10 = ISDN GF Transport
- 11 = MISP traffic
- 12 = MISP D-channel management
- 13 = MISP messaging
- 14 = ISDN BRI trunk DSL system report
- 15 = MPH traffic
- 16 = IP Phone Zone traffic report

Perform threshold tests on last reports

Perform threshold tests on customer reports

ITHC C TH

C = customer number

TH = threshold type:

- 1 = incoming matching loss
- 2 = outgoing matching loss
- 3 = average Speed of Answer

4 = percent All Trunks Busy

5 = percent OHQ overflow

Perform threshold tests on system reports

ITHS TH

TH = threshold type:

1 = dial tone speed

2 = loop and superloop traffic

3 = junctor group traffic (for multi-group systems only)

Note:

When a threshold test passes, "OK" is output.

Chapter 9: National ISDN-2 Call By Call Service Selection

Contents

This section contains information on the following topics:

Applicable regions on page 149

Feature description on page 149

Operating parameters on page 156

Feature interactions on page 157

Feature packaging on page 157

Feature implementation on page 157

Task summary list on page 157

Sample configuration on page 161

Feature operation on page 163

Applicable regions

This feature is only available in North America. Contact your system supplier or your Avaya representative to verify support of this product in your area.

Feature description

The National ISDN-2 (NI-2) Call By Call (CBC) Service Selection feature provides a standardized version of call by call service over an NI-2 TR-1268 interface, as defined in the Bellcore Technical Reference Specification TR-NWT-001270. It is intended that NI-2 CBC apply to all Class 5 type local exchanges complying with the NI-2 TR1270 standard.

The NI-2 Call By Call Service Selection feature provides all of the NI-2 TR-1268 Basic Call services. Please refer to the 'National ISDN-2 TR-1268 PRI Interface' feature module for a full description of the services that are offered.

Prior to the introduction of this feature, proprietary call by call capabilities were offered by Integrated Services Access feature (ISA) Call By Call Type service for DMS switches (such as the DMS-100), and Lucent's Call By Call Service Selection for 5ESS Local Exchange Carriers. Table 53: Differences between ISA, Lucent CBC, and NI-2 CBC on page 154 provides a summary of the functional differences between the three offerings.

Note:

The ISA Call By Call Type service and the NI-2 Call By Call Service Selection feature can co-exist on the same PBX.

NI-2 Call By Call Service Selection allows multiple service routes to share the same common pool of B-channels, rather than using dedicated routes that require each service route to have its own trunks. The channels are assigned to a service for each call.

A configuration using dedicated facilities is shown in <u>Figure 1: Dedicated facilities</u> configuration on page 150.

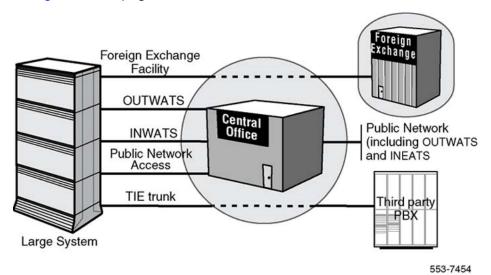


Figure 1: Dedicated facilities configuration

Figure 2: NI-2 Call By Call Service Selection configuration on page 151 shows an NI-2 Call By Call Service Selection configuration.

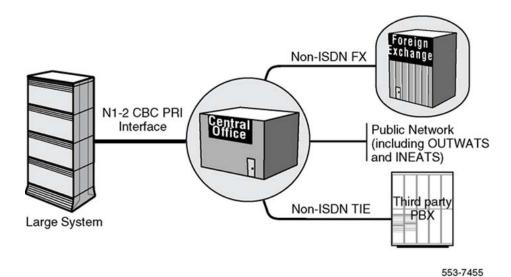


Figure 2: NI-2 Call By Call Service Selection configuration

<u>Figure 3: NI-2 CBC master route and service routes on the system</u> on page 151 shows the NI-2 CBC master route and service routes.

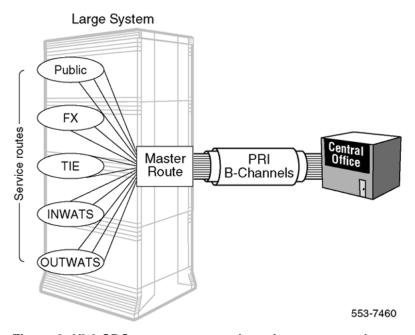


Figure 3: NI-2 CBC master route and service routes on the system

Provisioning a master route and service routes

NI-2 Call By Call Service Selection is provisioned by configuring a trunk route as an NI-2 Call By Call Service Selection master route, and associated service routes. A master route contains a list of B-channels (trunks) to be shared by the different service routes. Service routes do not have dedicated trunks. They are associated with the master route and share trunks for the tr

Call By Call services. Calls from the Central Office to the system are offered over the CBC master route.

The NI-2 CBC master route is defined in LD 16. The associated list of B-channels (trunks) is defined using LD 14. Then, the service routes are configured, also using LD 16. When configuring the service routes, the type of service to be carried over the B-channels for the NI-2 PRI interface is defined as a decimal value, as follows:

- 0 = Public call service (No Network Specific Facility IE is sent, since COT/DID routes are used)
- 19 = FX (Foreign Exchange) service
- 20 = TIE service
- 17 = Inward Wide Area Telecommunication Service (INWATS) service
- 18 = Outward Wide Area Telecommunication Service (OUTWATS) service. Information pertaining to the band number and the Inter-Exchange Carrier is stored in the service route.

Three OUTWATS services can be accessed:

- 1. IntraLATA OUTWATS, provided by a local service provider
- 2. InterLATA OUTWATS, provided by a carrier other than that of the local service provider and
- 3. Banded OUTWATS, using bands which each represents a geographical area to which a subscriber can place a call at a special tariff level

Lucent proprietary call by call services are as follows (these values are defined in the facility coding field in the NSF IE in order for the system to recognize the Lucent call by call services):

- 00001 = Access to Virtual Private Network (such as Lucent's Software Defined Network service)
- 00010 = MEGACOM 800
- 00011 = MEGACOM
- 00110 = ACCUNET switched digital service
- 00111 = International long distance service
- 01000 = International 800
- 01011 = Electronic Tandem Network
- 01101 = Private Virtual Network
- 10000 = DIAL IT and Lucent MultiQuest

For each FX and TIE trunk service, a Facility Number is assigned.

The maximum number of trunks limited by each service route is entered when configuring the service routes. The maximum number of channels for each service (a maximum value is required by the Bellcore Technical Reference Specification) is controlled by the Central Office, and assigned at the time of subscription. It is this value that must be entered in LD 16.

There is no minimum limit specified by the Bellcore Technical Reference Specification, therefore no minimum value is assigned by the Central Office, or defined on the system.

Engineering consideration pertaining to service maximums

The maximum value of trunks defined for any service type cannot exceed the network maximum, but the total of all maximums combined can be greater than the network maximum.

For example, in a single 23B+D span, two service routes can be configured, each with a maximum of 15 trunks (B-channels). Even though the combined number of B-channels (30) is greater than the network maximum (23), a minimum of 8 B-channels would be left available for other service routes.

For an incoming call to the system, if the maximum number of trunks defined for a service has been reached, the system will return a "Release Complete" message to the Central **O£**e, with the "Cause" value set to "User Busy". This allows the Central Office to return a busy tone to the caller.

Service routes for public network calls

NI-2 Call By Call Service Selection uses the Network Specific Facility (NSF) Information Element (IE) to indicate the requested service in the call request. If no NSF IE is included, the call is treated as a TR-1268 public network call (CO or DID).

Multiple service routes can be configured on a master route to serve outgoing public network calls, but only one service route can be specified in the master route to serve incoming public network calls (this is done using the IPUB prompt in LD 16). The route type for these service routes can be COT and DID. The result is that a system can be configured to handle public network calls with one incoming route and multiple outgoing routes, or one incoming and outgoing route with multiple outgoing routes.

NI-2 CBC service route treatment

Each service route stores the information, pertaining to a particular subscribed service, required to initiate or terminate a call. The information is transmitted to, or received from, the network by means of an NSF IE contained in the outgoing or incoming SETUP message.

Originating treatment (system to Central Office)

The system can designate the desired service to the Central Office, on a call-by-call basis. This is done by means of an NSF IE in the outgoing SETUP message. The NSF IE is built using the information configured in the service route. The SETUP message is sent by seizing a B-channel from a pool of channels associated to the CBC master route.

Termination treatment (Central Office to the system)

The Central Office, when offering a call to the system over the CBC master route, indicates in the NSF IE the type of service of the incoming call. The NSF IE contains the information required to identify a service route and to handle further call processing. The termination of NI-2 CBC service routes is based on the existing Integrated Services Access feature (ISA) call by call service treatment, and summarized in <u>Table 52: Call termination for NI-2 CBC service route</u> on page 154.

Table 52: Call termination for NI-2 CBC service route

TKTP	AUTO ^a = No			AUTO = Yes		
	DNIS	b = No	DNIS	S = Yes	DNIS = No	DNIS = Yes
	IDC ^c = No	IDC = Yes	IDC = No	IDC = Yes		
СОТ	attendant	N/A ^d	N/A	N/A	AUDNe	N/A
FEX	attendant	IDC digit	N/A	IDC digit	AUDN	N/A
WAT	attendant	IDC digit	N/A	IDC digit	AUDN	AUDNf
DID	last n CAD digit ^g	IDC digit	N/A	IDC digit	AUDN	AUDN ^h
TIE	CAD	IDC digit	N/A	IDC digit	AUDN	AUDN ⁱ

a. AUTO = Autoterminate. b. DNIS = Direct Number Identification Service. c. IDC = Incoming Digit Conversion. d. N/A = Not supported. e. AUDN = Autoterminate DN. AUDN in LD 16 has the same significance as ATDN in LD 14. f. Must be an ACD DN. g. Last n CAD digit = the last n digits of the Called Party Number IE, where 'n' is defined using prompt LDN0 in LD 15. h. Must be an ACD DN. i. Must be an ACD DN.

Differences between ISA, CBC, and NI-2 CBC

<u>Table 53: Differences between ISA, Lucent CBC, and NI-2 CBC</u> on page 154 summarizes the differences between ISA, Lucent Call By Call Service Selection, and NI-2 Call By Call Service Selection.

Table 53: Differences between ISA, Lucent CBC, and NI-2 CBC

ISA	Lucent CBC	NI-2 CBC
Proprietary (interface specific to DMS-100 and DMS-250).	Proprietary (interface specific to Lucent 5ESS Local Exchange Carriers).	Bellcore-based standard CBC service (independent of switch type).
Services:	Services:	Standardized Services:

ISA	Lucent CBC	NI-2 CBC
• Public	• ACCUNET	• TR-1268 Public (CO or DID)
• PRIVATE	• SDN	• FX
• INWATS	• MEGACOM	• TIE
• OUTWATS • TIE	• MEGACOM 800 • WATB	OUTWATS (IntraLATA, Bands, and InterLATA)
• FX	• WATM	• INWATS
	•LDS	Non-standardized Services:
	• IWAT	e.g., Lucent proprietary services, as follows:
	• 1800	Access to operator
		Access to Exchange Carrier Services (call by call services)
		Access to Virtual Private Network
		• MEGACOM/ MEGACOM 800
		ACCUNET switched digital service
		International long distance service
		International 800
		Electronic Tandem Network
		Private Virtual Network
		DIAL IT and Lucent MultiQuest
CBC calls are routed according to the Service Identifier in Service Parameter of the NSF IE.	CBC calls are routed according to the service specified by the Facility Coding Value in the NSF IE.	CBC calls are routed according to the service specified by the Facility Coding Value and the Service Parameter in the NSF IE.
Up to 512 service routes can be configured on the system (one per Service Identifier value), enabling access to 512 possible	Only one service route can be configured per service type on the system, enabling access to only nine possible	Up to 512 service routes can be configured on the system, enabling access to a maximum of 512 possible services.
services.	services.	• Public (COT or DID)
	• 1 ACCUNET • 1 SDN	• 1 INWATS
	• 1 SDN • 1 MEGACOM	OUTWATS (98 bands, 1
	• 1 MEGACOM 800	IntraLATA, 1 InterLATA
	• 1 WATB	Up to 512 FX or TIE (for FX and TIE, a Facility Number can be

ISA	Lucent CBC	NI-2 CBC
	• 1 WATM • 1 LDS	assigned in LD 16 for each service route)
The operation mode for TIE trunks is send ³ .	N/A	The operation mode for TIE trunks can be sent ⁴ or cut-through ⁵
The minimum and maximum function are defined on a per service route basis.	The minimum and maximum function are defined on a per service route basis.	The maximum value is defined on a per service route basis (a maximum is required by the Bellcore Specification). The maximum value is also defined by the serving Central Office. There is no minimum value allowed by the Bellcore Specification.
One Public service route (no NSF IE) can be configured for multiple incoming and outgoing trunks, with a maximum and a minimum value.	N/A	A system can be configured to handle public network calls with one incoming route and multiple outgoing routes, or one incoming and outgoing route with multiple outgoing routes. The route type for these service routes can be COT and DID.

Operating parameters

NI-2 Call By Call Service Selection does not support the TIE trunk cut-through mode.

The maximum number of NI-2 Call By Call Service Selection routes that can be configured on a system is 512.

The maximum number of trunks for each route is 254 for each master route.

¹ The maximum cannot be greater than 512 for all call types.

² Multiple service routes can be configured on a master route to serve outgoing public network calls, but only one service route can be specified in the master route to serve incoming public network calls. The route type for these service routes can be COT and DID. The result is that a system can be configured to handle public network calls with one incoming route and multiple outgoing routes, or one incoming and outgoing route with multiple outgoing routes

⁴ For a TIE trunk operating in send mode, the Central Office collects and screens the called digits before sending the digits to the Class II equipment or PBX at the end of the TIE trunk.

⁵ For a TIE trunk operating in cut-through mode, the Central Office does not collect the called digits. The Class II equipment or the switch at the end of the TIE trunk are allowed to exchange inband information, such as dial tone and address information.

Feature interactions

Calling Party Privacy

The Calling Party Privacy feature allows a user the option of restricting the display of the calling number on the phone of the called party. The INWATS service requires that the CLID always be displayed. Therefore, subscribers to INWATS cannot restrict the display of the calling number, even though they have the Calling Party Privacy feature active.

Feature packaging

The NI-2 Call By Call Service Selection feature requires the NI-2 Call By Call (NI2 CBC) package 334.

The following packages are also required as dependencies:

- Integrated Services Digital Network (ISDN) package 145
- Primary Rate Access (PRA) package 146
- Multi-purpose Serial Data Link (MSDL) package 222
- National ISDN-2 (NI2) package 291

Feature implementation

Task summary list

The following is a summary of the tasks in this section:

- Table 54: LD 17 Configure the primary D-channel for the NI-2 Basic Call Service. on page 158
- 2. <u>Table 55: LD 16 Configure the NI-2 Call By Call Service master route.</u> on page 158

- 3. Table 56: LD 14 Define the associated list of trunks (B-channels) that are to be shared by the NI-2 CBC service routes. on page 159
- 4. Table 57: LD 16 Configure the NI-2 CBC service routes. on page 159

Table 54: LD 17 Configure the primary D-channel for the NI-2 Basic Call Service.

Prompt	Response	Description
REQ	NEW	Add new data.
TYPE	CFN	Configuration Record.
ADAN	NEW DCH xx	Add a primary D-channel where: xx = 0-63 (For Large Systems)
CTYP	MSDL	Supported only on Multi-purpose Serial Data Link (MSDL) or Downloadable D-channel cards.
USR	PRI	D-channel mode.
IFC	NI2	NI-2 TR-1268 interface type.
CO_TYPE		Central Office switch type (prompted only if IFC = NI2).
	(STD) ATT	STD = Totally compatible with Bellcore standard. ATT = Lucent 5ESS.
PRI	III nn	III = PRI loop using the same D-channel (0,1,159)nn = Interface identifier (2-15)

Table 55: LD 16 Configure the NI-2 Call By Call Service master route.

Prompt	Response	Description
REQ	NEW	Add new data.
	CHG	Change existing data.
TYPE	RDB	Route Data Block.
DMOD	1-127	Default Model number for this route for Avaya Media Gateway 1000B
CUST	xx	Customer number as defined in LD 15.
ROUT		Route number
	0-511	Range for Large System and CS 1000E system
	0-127	Range for Avaya Media Gateway 1000B
TKTP	СВСТ	The trunk type is a Call By Call master route.
ISDN	YES	ISDN route.

Prompt	Response	Description
- IFC	NI2	Interface type is NI-2.
- IPUB	0-511	Service route to be used for incoming network calls.
PNI	1-32700	Private Network Identifier.
ICOG	IAO	IAO = The trunk is incoming and outgoing.
	ICT	ICT = The trunk is incoming only.
	OGT	OGT = The trunk is outgoing only.

Table 56: LD 14 Define the associated list of trunks (B-channels) that are to be shared by the NI-2 CBC service routes.

Prompt	Response	Description
REQ	NEW	Add new data.
	CHG	Change existing data.
TYPE	СВСТ	Call By Call trunk.
TN		Terminal Number.
	I ch	Loop and channel for digital trunks, where: I = Previously defined loop number (0-159). ch = channel (1-24).
CUST	xx	Customer number as defined in LD 15.
RTMB		Route number and Member Number
	0-511 1-4000	Range for Large System and CS 1000E system
	0-127 1-4000	Range for Avaya Media Gateway 1000B

Note:

Up to 512 service routes can be configured using this procedure.

Table 57: LD 16 Configure the NI-2 CBC service routes.

Prompt	Response	Description
REQ	NEW	Add new data.
	CHG	Change existing data.
TYPE	RDB	Route Data Block.
CUST	xx	Customer number as defined in LD 15.
ROUT		Route number

Prompt	Response	Description
		Note:
		Service route number must be different than the value entered for the master route.
	0-511	Range for Large System and CS 1000E system
	0-127	Range for Avaya Media Gateway 1000B
 TKTP		Service trunk type.
	TIE COT DID WAT FEX	TIE Central Office Direct Inward Dial Wide Area Telecommunication Service Foreign Exchange
ISDN	YES	ISDN route.
- IFC	NI2	Interface type is NI-2.
- CBCR	YES	Service route indicator.
RTN	0-511	Master route number, as previously defined in LD 16.
SRVC	(0)-31	Decimal value of the service provisioned for NI-2. Prompted only if IFC = NI2. 0 = Public call service 19 = FX (Foreign Exchange) service 20 = TIE service 17 = Inward Wide Area Telecommunication Service (INWATS) service 18 = Outward Wide Area Telecommunication Service (OUTWATS) service. Lucent proprietary call by call services can also be defined here. Refer to Provisioning a master route and service routes on page 151 for a list of these values.
FACN	(0)-99999	TIE or FX facility number. Prompted only if IFC = NI2, and SRVC = 19 (FX) or 20 (TIE).
BAND	(0)-99	OUTWATS band number. Prompted only if IFC= NI2 and SRVC = 18 (OUTWATS).
IEC	(0)-xxx (0)-xxxx	Inter-Exchange Carrier providing the service. Prompted if IFC = NI2 and SRVC = 0-16, 18, or 21-31.
MAX	xxx	Maximum number of trunks for the service route. This value must be the same as the value assigned by the Central Office at the time of subscription.

Sample configuration

The following provides a sample configuration of the NI-2 CBC feature.

LD 17 provides a sample configuration of a primary D-channel for the NI-2 Basic Call Service.

Table 58: LD 17 Configure a primary D-channel for the NI-2 Basic Call Service.

Prompt	Response	Description
REQ	NEW	Add configuration information.
TYPE	CFN	Configuration Record.
ADAN	NEW DCH 1	Add a primary D-channel for NI-2, where 1 is the primary D-channel number.
СТҮР	MSDL	Supported only on Multi-purpose Serial Data Link (MSDL) or Downloadable D-channel cards.
USR	PRI	D-channel mode.
IFC	NI2	NI-2 TR-1268 interface type.
CO_TYPE	STD	Central Office switch type for the NI-2 interface. STD = Totally compatible with Bellcore standard.
PRI	12	1 = PRI loop using the same D-channel (0,1,159) 2 = Interface identifier (2,3,15)

LD 16 configures a trunk route as an NI-2 Call By Call Service Selection master route.

Table 59: LD 16 Configure a trunk route as an NI-2 Call By Call Service Selection master route.

Prompt	Response	Description
REQ	CHG	Change existing data.
TYPE	RDB	Route Data Block.
DMOD	1-127	Default Model number for this route for Small System, CS 1000S, Media Gateway 1000B, and Media Gateway 1000T
CUST	xx	Customer number as defined in LD 15.
ROUT	0	Master route number
TKTP	СВСТ	The trunk type is a Call By Call master route.

Prompt	Response	Description
DTRK	YES	Trunk route is digital.
DGTP	PRI	Trunk type is digital.
ISDN	YES	ISDN is used.
- IFC	NI2	Interface type is NI-2.
- IPUB	1	Service route for incoming public network calls.
PNI	1	Customer's Private Network Identifier.
ICOG	IAO	The trunk is incoming and outgoing.

LD 14 defines the associated list of trunks (B-channels) that are to be shared by the NI-2 CBC service routes.

Table 60: LD 14 Define the associated list of trunks (B-channels) to be shared by NI-2 CBC service routes.

Prompt	Response	Description
REQ	CHG	Change existing data.
TYPE	СВСТ	Call By Call trunk.
TN		Terminal Number
	0 1	Loop and channel for digital trunks, where: 0 = Previously defined loop number (0-159). 1 = channel (1-24).
CUST	xx	Customer number as defined in LD 15.
RTMB	0 1	CBC master route and member number.

LD 16 defines the NI-2 CBC service routes. Up to 512 service routes can be configured using this procedure.

Table 61: LD 16 Define the NI-2 CBC service routes.

Prompt	Response	Description
REQ	NEW	Add new data.
	CHG	Change existing data.
TYPE	RDB	Route Data Block.
CUST	xx	Customer number as defined in LD 15.

Prompt	Response	Description
ROUT	1	Service Route number
TKTP	TIE	Service trunk type.
ISDN	YES	ISDN route.
- IFC	NI2	Interface type is NI-2.
- CBCR	YES	Service route indicator.
RTN	0	Master route number, as previously defined in LD 16, with which the service routes are associated.
SRVC	20	Decimal value of for TIE service.
FACN	20	TIE Facility Number.
MAX	1	Maximum number of trunks for the service route. This value must be the same as the value assigned by the Central Office at the time of subscription.

Feature operation

No specific operating procedures are required to use this feature.

National ISDN-2 Call By Call Service Selection

Index

Numerics	TFS004 reports	
Trainion 100	call back attempts1	
36 CCS peg counts	CBQ	<u>129</u>
50 CCS peg counts	RVQ	
	Call Park measurements	
^	call processing messages	
A	call registers (CR)	
AAA (Attendant Alternative Answering) peg counts 94	calls <u>45, 62, 94, 101, 110, 111, 121–123, 1</u>	
abandon count81	attendant console time spent servicing	
abandoned calls	blocked	<u>110, 111</u>
average wait time of92	CBQ	<u>122</u>
peg count91	lost	
while in OHQ	MISP	
accumulating registers	NCOS group, in OHQ	<u>126</u>
ACD (Automatic Call Distribution) DN83	OHQ	
All Trunks Busy87	peg counts for parked	<u>101</u>
All Truiks Busy	refusing expensive routes	<u>125</u>
APL (Auxiliary Processor Link) measurements 102	RVQ	<u>123</u>
` ,	calls delayed peg counts	<u>91</u>
attendant consoles, calculating performance of94	CAS (Centralized Attendant Service)	<u>90</u>
attendant loops94	CBQ (Call Back Queuing) measurements	<u>122</u>
average attendant response91	CBQCM (Call Back Queuing for Conventional Ma	ains) <mark>127</mark>
average speed of answer90	CCBQ (Coordinated Call Back Queuing)	<u>127</u>
average time	CCS (call seconds) 20	, <mark>28</mark> , <u>33</u>
in CBQ	TFS001 reports	<u>33</u>
in OHQ	usage measurements	
in queue91	warning messages of excessive	
in RVQ <u>123</u>	CDR (Call Detail Recording) records, lost	
	changing	
В	ITM for selected terminals	
	system ID	22
blocked calls <u>110</u> , <u>111</u> , <u>129</u>	time/date	
TFC012 reports	conference loops	35, 40
TFN003 reports	TFS001 reports	
BRI (Basic Rate Interface) ISDN <u>62</u> , <u>64</u>	TFS002 reports	
MISP card D-channel messages	connections	
MISP card DSL activities62	36 to 50 CCS in length	
	50 CCS in length or longer	
C	CPU load reports	
	CS 1000E system	
calculating attendant performance94	TFC012 reports	
call attempts	CS 1000M system	
deviations from expected47	TFC012 reports	
incomplete on D-channel links66	CSL (Command Status Link)	
MISP cards	customer (TFC) reports <u>24, 77, 1</u>	
quantity of NCOS	described	
RCC determination	performing threshold tests on	

printing	TFS001 reports <u>33</u>
types of	
customer console queue measurements 90	Н
customer network (TFN) reports	11
described <u>119</u>	holding registers20
types of	Hour of Max RTU (Hour of Maximum Real Time Used) 4
D	ī
D-channels <u>58</u> , <u>64</u>	-
TFS009 reports <u>58</u>	I/O buffer overloads44 idle cycle counts44, 47
TFS012 MISP card reports64	described
data packets	deviations from expected4
MISP/BRSC64	incoming calls
terminal	offered CCBQ or CBQCM
TFS015 MPH reports68	when path is established20
daylight savings time, programming	incoming ISA peg counts8
defining	incoming matching loss threshold112
lines/trunks for special traffic measurement25	incoming peg counts
LLC level blocking probability47	incoming trunk group measurements127
dial tone delay	incoming usage79
dial tone speed threshold reports	input message traffic (APL)103
abandoned81	internal requests, time spent servicing93
forcing end of87	intracustomer FTMs
partial81	intracustomer peg count80
Digital Signal Processors (DSP)	intracustomer usage <u>79</u>
TFC012 reports	intraloop FTMs <u>34</u>
DTR (Digitone Receiver) measurements40	intraloop usage <u>3</u> 4
	ISA (Integrated Services Access) trunks84
	ISDN BRI (Basic Rate Interface)62
E	MISP card62
Equipment Data Dump, changes since last 27	ISDN GF Transport (TFS010)60
exception peg counts47	ITM (Individual Traffic Measurement) class of service
expensive route acceptances <u>120</u> , <u>125</u>	changing on selected terminals14
TFN001 reports	line peg counts50
TFN002 reports	special traffic measurement25
	J
F	iuneter ETMo
feature key usage measurement	junctor FTMs
described	junctor usage <u>52, 73</u>
setting customer for <u>141</u>	TFS007 measurements
FTMs (failures to match) <u>20</u> , <u>33</u> , <u>73</u> , <u>79</u> , <u>110</u> , <u>112</u> , <u>113</u>	threshold exceeded
defined	junctors (TFS007 reports)5
network	<u>v</u>
outgoing <u>79</u>	.
TFC012 reports	L
TFC101 reports	LD 02 Troffic Control program
TFC102 reports	LD 02 Traffic Control program

configuring TFS008 reports	<u>52</u>	MPH (Meridian Packet Handler) traffic reports	<u>68</u>
defining LLC level blocking probability	<u>47</u>	MSDL (Multi-purpose Serial Data Link) card	<u>58</u>
described		Multi-User Login feature	<u>80</u>
traffic commands	<u>133</u>	-	
LD 44 Audit program	<u>76</u>	NI	
line peg counts		N	
line usage			
lines		NAS (Network Attendant Service)	
defining for special traffic measurement		NCOS (Network Class of Service) measurements	
TFS005		network group junctor numbers	
LLC (Line Load Control)		network loops <u>21, 2</u>	
setting blocking probability		defined	<u>2</u> 1
load balance problems		timeslots	
junctor		types measured by TFS001	<u>33</u>
TFS001 indications		network reports <u>14</u>	
		printing	
load peak peg counts		Network time synchronization commands	
TFS004 reports			
loop FTMs			
conference		0	
service			
TFS001 reports		OHQ (Off-Hook Queuing) measurements . 121, 120	6, <u>128</u>
loop numbers		TFN001 reports	<u>12</u> 1
loop peg counts		TFN002 reports	
conference	<u>36</u>	TFN003 reports	
TDS loops	<u>37</u>	OHQ overflow threshold	
TFS001 reports	<u>35</u>	OHQT (Off-Hook Queuing Timer)	
loop types		options	
loop usage		traffic period	
conference		trunk seizure	
service		trunk traffic report	
terminal	35	outgoing ISA peg counts	
traffic threshold reports		outgoing trunk overflow	
		outgoing usage	
M		output message traffic (APL)	
•••		output message trainic (AFL)	102
management messages	66		
Max RTU (Maximum of Real Time Used)		P	
message attendant queue			
messaging, telephone		package 105 blocking counts	47
MISP (Multi-purpose ISDN Signaling Processo		parallel Radio Paging measurements	
wher (wata parpood 1021) digitaling 1 1000000		partial dial	
TFS011 reports		paths, established	
TFS012 D-channel reports		•	
		peg counts	
TFS013 reports	<u>00</u>		
MISP/BRSC data packets		defined	
TFS011 reports		external calls handled by attendant	
MISP/BRSC links		feature key usage	
management data link errors		incoming/outgoing ISA	
TFS012 reports		internal calls handled by attendant	
MISP/BRSC messages		intraloop	
TFS011 reports	<u>64</u>	miscellaneous tone	<u>39</u>
TFS012 reports	<u>65</u>	outgoing	<u>7</u> 9

TFS001 reports <u>32</u>	DTR measurements4
Percent of RTU (Real Time Used)47	TFS002 reports3
permanent signal80	tone detector service4
printing	service loops
current TNs with ITM set141	defined2
customer report types	TFS001 reports
customer reports	TFS002 reports
customer thresholds140	service request peg counts39–4
LLC levels	DTR measurements4
network report types <u>140</u>	TFS002 reports3
network reports	tone detector service4
system ID <u>137</u>	service usage <u>39–4</u>
system report types <u>138</u>	DTR measurements4
system thresholds	TFS002 reports3
time of day adjustments143	tone detector service4
traffic data	setting
traffic reports146	customer for feature key usage measurement14
processor load43	customer report types
	measurements on selected terminals14
2	network report types14
એ	system ID <u>14</u>
QoS IP statistics (TFS016)69	system report types <u>13</u>
<u>30</u>	thresholds <u>13</u>
	traffic report schedules <u>13</u>
२	standard blocking <u>120, 12</u>
Dadia Davina	network call <u>12</u>
Radio Paging98	route list requests <u>12</u>
RCC (Rated Call Capacity)	Station Park peg counts <u>10</u>
reports, traffic	successful AAA termination peg count9
schedules	sysloads <u>27, 74</u>
types of	effect on traffic data2
route list entry use	TFS301 reports <u>7</u>
route list measurements	system clock, compensating for 14
route list requests	system ID
	described2
served without delay	setting <u>14</u>
· •	System Park peg counts <u>10</u>
126, 129 described	system reports
TFN002 reports	performing threshold tests on <u>14</u>
TFN002 reports	setting types of <u>13</u>
RVQCM (Remote Virtual Queuing Conventional Main)	types of2
	system traffic reports3
	Т
S	tondom ETMo
polosted terminals	tandem FTMs8
selected terminals	tandem peg count8
setting traffic measurements	TDS loops3
TFS005 measurements	loop FTMs3
traffic reports	peg counts
serial Radio Paging measurements	telephone messaging
service FTMs <u>38</u> , <u>40</u>	telephone set status 103

terminal data packets64	TFS002 reports	<u>30</u> , <u>38</u> , <u>72</u>
terminal links <u>65</u>	described	<u>38</u>
TFS012 reports of initializations65	dial tone speed threshold violat	ions <u>72</u>
terminal loops33, <u>50</u>	verifying traffic data	<u>30</u>
TFS001 measurements33	TFS003 reports	<u>42</u>
TFS005 measurements50	TFS004 reports	<u>43</u>
terminal messages <u>64,</u> <u>65</u>	TFS005 reports	<u>50</u>
TFS011 reports64		
TFS012 reports <u>65</u>	described	<u>51</u>
terminals <u>74</u>	traffic threshold violations	<u>73</u>
36 to 50 CCS	TFS008 reports	<u>52</u>
50 CCS or longer	TFS009 reports	<u>58</u>
TFC001 reports29, 78	• • • • • • • • • • • • • • • • • • •	<u>60</u>
described		<u>62</u>
verifying traffic data29		66
TFC002 reports	•	
described82		
ISA service routes84	•	
verifying traffic data29	•	
TFC003 reports	•	
average speed of answer threshold exceeded113		
described90		
when generated25	<u> </u>	
TFC004 reports		
average speed of answer threshold exceeded 113		
described92		
when generated25	<u> </u>	
TFC005 reports96		
TFC005 feature key numbers96		
TFC006 reports96		
TFC007 reports		
TFC008 reports	•	
TFC009 reports		
TFC012 reports	•	
TFC101 reports112		
TFC102 reports113		
TFC103 reports	<u> </u>	
TFC104 reports		
TFN001 reports		
TFN002 reports		
TFN003 reports		
TFN101 reports		
TFS000 traffic print program entry32, 141		
described32		
suppressing printing of title		
TFS001 reports		
described		
loop traffic threshold violations		
TFC101 reports triggering112		
TFC102 reports triggering113		
verifying traffic data 30		

conversion to CCS2	TFC002 reports82
factors affecting2	•
lost due to initialization7	
measured over one hour74	<u>.</u> <u>1</u>
output <u>2</u>	⁷ U
overview2	
Traffic Log File2	<u>1</u>
traffic measurements27-29, 14	usage <u>20, 28, 39, 82, 96</u>
accessing variables2	connections with high28
setting, on selected terminals14	defined
small quantities2	g teature key <u>96</u>
verifying2	
traffic period option8	
traffic report schedules, setting138	\overline{V}
traffic reports	<u>.</u>
on selected terminals2	verifying traffic measurements29
printing <u>14</u>	Virtual Network Services
trunk seizure option8	Reuse count of on hold VNS trunks121
trunk traffic report options8	Total time VNS trunks were idle121
trunk usage8	7
incoming <u>8</u>	<u> </u>
trunks	5 W
defining for special traffic measurement2	5
maximum percentage busy 118	warning messages, threshold report